Advertisement

Environmental Earth Sciences

, Volume 61, Issue 7, pp 1473–1480 | Cite as

Submerged caves of Croatia: distribution, classification and origin

  • Maša SurićEmail author
  • Robert Lončarić
  • Nina Lončar
Original Article

Abstract

Presently, 235 submerged caves and pits have been recorded along the Croatian coast and islands, partly or completely submerged by sea water. Contrary to the inland situation, recorded submerged features are predominantly horizontal (60%), though there are indications that the real situation is similar to that of the continental part where 69% are vertical pits. Completely marine conditions are established in 126 caves and the rest are anchihaline caves and submarine springs. Speleothems are found in more than 140 caves. By their origin, the investigated caves are all continental features formed in Mesozoic and Palaeogene carbonates, subsequently submerged owing to sea transgression. Due to the relatively low wave energy, rapid sea level rise and maturity of the host rock, they do not fit into concepts of a sea cave or a flank margin cave development, but they fulfil several conditions for being the blue holes. Since the term ‘blue hole’ is mainly associated with the Bahamian karst, our attempt is only to show the possible similarities with no intention of ascribing that term to the Croatian caves. Beside karstological issues, Croatian submerged caves are unique environmental, archaeological and tourism assets.

Keywords

Submerged caves Karst Adriatic Sea Croatia 

Notes

Acknowledgments

We wish to express our gratitude to Č. Benac, N. Buzjak, M. Garašić, B. Jalžić, V. Jalžić, M. Juračić, V. Mihelčić, O. Pečar, D. Petricioli, T. Rađa and P. Tasić for providing data, sketches, photos and remarks on submerged locations. We are grateful to anonymous reviewers for the detailed review and valuable suggestions and comments, which substantially improved the paper.

References

  1. Alessio M, Allegri L, Antonioli F, Belluomini G, Ferranti L, Importa S, Manfra L, Proposito A (1992) Risultati preliminari relativi alla datazione di speleotemi sommersi nelle fasce costiere del Tirreno centrale. Giornale di Geologia ser 3 54(2):165–193Google Scholar
  2. Allouc J, Harmelin J-G (2001) Les dépôts d'enduits manganoferriféres en environnement marin littoral. L'example de grottes sousmarines en Méditerranée nord-occidentale. Bulletin de la Société Géologique de France 172:765–778 CrossRefGoogle Scholar
  3. Bakran-Petricioli T, Vacelet J, Zibrowius H, Petricioli D, Chevaldonné P, Rađa T (2007) New data on the distribution of the “deep-sea” sponges Asbestopluma hypogea and Oopsacas minuta in the Mediterranean Sea. Mar Ecol Evol Persp 28 S1:10–23Google Scholar
  4. Baučić I (1984) Jame i spilje na otoku Braču. Brački zbornik 14:23–34Google Scholar
  5. Bonacci O, Pipan T, Culver DC (2009) A framework for karst ecohydrology. Environ Geol 56:891–900. doi: 10.1007/s00254-008-1189-0 CrossRefGoogle Scholar
  6. Bozanic JE (1993) Preliminary investigations in anchialine caves of Cuba. In: Heine J, Crane N (eds) Diving for Science. Proceedings of the 13th annual scientific diving symposium, American Academy of Underwater Sciences. Pacific Grove, CA, pp 33–41Google Scholar
  7. Correggiari A, Roveri M, Trincardi F (1996) Late Pleistocene and Holocene evolution of the North Adriatic Sea. Il Quaternario 9(2):697–704Google Scholar
  8. Duplančić Leder T, Ujević T, Čala M (2004) Coastline length and areas of islands in the Croatian part of the Adriatic Sea determined from the topographic maps at scale of 1:25000. Geoadria 9(1):5–32Google Scholar
  9. Fairbridge RW (ed) (1968) The encyclopedia of geomorphology. Reinhold Book Corp., New YorkGoogle Scholar
  10. Florea LJ, Mylroie JE, Price A (2004) Sedimentation and porosity enhancement in a breached flank margin cave. Carbonates Evaporites 19(1):75–85CrossRefGoogle Scholar
  11. Ford DC, Williams P (2007) Karst geomorphology and hydrology, 2nd edn. Wiley, New YorkGoogle Scholar
  12. Fornós JJ, Gelabert B, Ginés A, Ginés J, Tuccimei P, Vesica P (2002) Phreatic overgrowths on speleothems: a useful tool in structural geology in littoral karstic landscapes. The example of eastern Mallorca (Balearic Islands). Geodinamica Acta 15:113–125CrossRefGoogle Scholar
  13. Frank E, Mylroie J, Troester J, Alexander EC Jr, Carew J (1998) Karst development and speleogenesis, Isla de Mona, Puerto Rico. J Cave Karst Stud 60(2):73–83Google Scholar
  14. Garašić M (1991) Morphological and hydrogeological classification of speleological structures (caves and pits) in the Croatian karst area. Geološki vjesnik 44:289–300Google Scholar
  15. Garašić M (2006a) Skupljeni podaci za 9500 istraženih speleoloških objekata u Hrvatskoj. Spelaeologia Croatica 7:63Google Scholar
  16. Garašić M (2006b) Pronađeni i snimljeni najdublji speleothemi u moru. Spelaeologia Croatica 7:58Google Scholar
  17. Ginés A, Ginés J (2007) Eogenetic karst, glacioeustatic cave pools and anchialine environments on Mallorca Island: a discussion of coastal speleogenesis. Int J Speleol 36(2):57–67Google Scholar
  18. Gottstein Matočec S, Jalžić B (2003) Biospeleološka istraživanja vodene faune anhihalinih špilja i jama na području NP “Kornati”. Izvješće izrađeno za NP “Kornati”, ZagrebGoogle Scholar
  19. Joint Nature Conversation Committee (2007) Second report by the UK under article 17 on the implementation of the Habitats Directive from January 2001 to December 2006. PeterboroughGoogle Scholar
  20. Juračić M, Bakran-Petricioli T, Petricioli D (2002) Cessation of karstification due to the sea-level rise? Case Study of the Y-Cave, Dugi otok, Croatia. In: Grabovšek F (ed) Evolution of karst: from prekarst to cessation. Založba ZRC, Postojna, Ljubljana, pp 319–326Google Scholar
  21. Kennett JP (1982) Marine Geology, Prentice-Hall, Inc., Englewood CliffsGoogle Scholar
  22. Lace MJ (2008) Coastal cave development in Puerto Rico. J Coast Res 24(2):508–518CrossRefGoogle Scholar
  23. Mesić J (2006) L’esplorazione archeologica a scopo protettivo della grotta di Vodeni Rat. In Radić Rossi I (ed) Archeologia subacquea in Croazia. Studi e ricerche, Venezia: Marsilio: 91–100Google Scholar
  24. Mylroie JE (2005) Coastal caves. In: Culver DC, White WB (eds) Encyclopedia of caves. Elsevier Academic Press, San Diego, pp 122–127Google Scholar
  25. Mylroie JE, Carew JL (1995) Geology and karst geomorphology of San Salvador Island, Bahamas. Carbonates Evaporites 10(2):193–206CrossRefGoogle Scholar
  26. Mylroie JR, Mylroie JE (2007) Development of the carbonate island karst model. J Cave Karst Stud 69(1):59–75Google Scholar
  27. Mylroie JE, Carew JL, Moore AI (1995) Blue holes: definition and genesis. Carbonates Evaporites 10(2):225–233CrossRefGoogle Scholar
  28. Mylroie JE, Taboroši D, Jocson JMU, Vann DT, Wexel C (2001) Karst features of Guam in terms of general model of carbonate island karst. J Cave Karst Stud 63(1):9–22Google Scholar
  29. Mylroie JE, Mylroie JR, Nelson CS (2008) Flank Margin cave development in telogenetic limestones of New Zealand. Acta Carsologica 37(1):15–40Google Scholar
  30. Onorato R, Denitto F, Belmonte G (1999) Le grotte marine del Salento: classificazione, localizzazione e descrizione. Thalassia Salentina 23:67–116Google Scholar
  31. Orlić M, Gačić M, La Violette PE (1992) The currents and circulation of the Adriatic Sea. Oceanol Acta 15(2):109–124Google Scholar
  32. Peltier WR, Fairbanks RG (2006) Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat Sci Rev 25:3322–3337CrossRefGoogle Scholar
  33. Richards DA, Dorale JA (2003) Uranium-series chronology and environmental applications of speleothems. In: Bourdon B, Henderson GM, Lundstrom CC, Turner SP (eds) Uranium series geochemistry, Reviews in mineralogy & geochemistry, vol 52. Geochemical Society, Mineralogical Society of America, Washington, DC, pp 407–460 Google Scholar
  34. Schwabe SJ, Carew JE (2006) Blue holes: an inappropriate moniker for water-filled caves in the Bahamas. In: Davis RL, Gamble DW (eds) Proceedings of 12th symposium on the geology of the Bahamas. Bahamian Field Station, San Salvador Island, Bahamas, pp 101–108Google Scholar
  35. Schwabe SJ, Carew JL, Herbert R (2007) Making caves in the Bahamas: different recipes, same ingredients. In: The 13th symposium on the geology of the Bahamas and other carbonate regions, pp 153–167Google Scholar
  36. Smart PL, Beddows PA, Doerr S, Smith SL, Whitaker FF (2006) Cave development on the Caribbean coast of the Yucatan Peninsula, Quintana Roo, Mexico. Geological Society of America Special Paper 404: perspectives on karst geomorphology, hydrology & geochemistry, pp 105–128. doi: 10.1130/2006.2404(10)
  37. Stafford K, Mylorie JE, Taboroši D, Jenson J, Mylorie JJ (2005) Karst development on Tinian, Commonwealth of Northern Mariana Islands: controls on dissolution in relation to the carbonate islands karst model. J Cave Karst Stud 67(1):14–27Google Scholar
  38. Surić M (2005) Submerged karst—dead or alive? Examples from the Eastern Adriatic coast (Croatia). Geoadria 10(1):5–19Google Scholar
  39. Surić M (2006) Late Pleistocene–Holocene palaeoenvironmental changes—records from submerged speleothems from the Eastern Adriatic Sea (Croatia) (in Croatian). Dissertation, University of ZagrebGoogle Scholar
  40. Surić M, Juračić M, Horvatinčić N, Krajcar Bronić I (2005a) Late Pleistocene–Holocene sea-level rise and the pattern of coastal karst inundation: records from submerged speleothems along the Eastern Adriatic Coast (Croatia). Mar Geol 214(1–3):163–175. doi: 10.1016/j.margeo.2004.10.030 Google Scholar
  41. Surić M, Horvatinčić N, Suckow A, Juračić M, Barešić J (2005b) Isotope records in submarine speleothems from the Adriatic coast, Croatia. Bulletin de la Société Géologique de France 176(4):363–373. doi: 10.2113/176.4.363 CrossRefGoogle Scholar
  42. Surić M, Richards DA, Hoffmann DL, Tibljaš D, Juračić M (2009) Sea level change during MIS 5a based on submerged speleothems from the eastern Adriatic Sea (Croatia). Mar Geol 262:62–67. doi: 10.1016/j.margeo.2009.03.005 CrossRefGoogle Scholar
  43. Velić I (2007) Stratigraphy and Palaeobiogeography of Mesozoic Benthic Foraminifera of the Karst Dinarides (SE Europe). Geol Croat 60(1):1–114Google Scholar
  44. Vesica PL, Tuccimei P, Turi B, Fornós JJ, Ginés A, Ginés J (2000) Late Pleistocene paleoclimates and sea-level change in the Mediterranean as inferred from stable isotope and U-series studies of overgrowths on speleothems, Mallorca, Spain. Quat Sci Rev 19:865–879CrossRefGoogle Scholar
  45. Vlahović I, Tišljar J, Velić I, Matičec D (2002) The Karst Dinarides are composed of relics of a single Mesozoic platform: facts and consequences. Geol Croat 55(2):171–183Google Scholar
  46. Vlahović I, Tišljar J, Velić I, Matičec D (2005) Evolution of the Adriatic carbonate platform: palaeogeography, main events and depositional dynamics. Paleogeogr Paleoclimatol Paleoecol 220:333–360. doi: 10.1016/j.palaeo.2005.01.011 CrossRefGoogle Scholar
  47. Walker LN, Mylroie JE, Walker AD, Mylroie JR (2008) The caves of Abaco Island, Bahamas: keys to geologic timelines. J Cave Karst Stud 70(2):108–119Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of GeographyUniversity of ZadarZadarCroatia

Personalised recommendations