Environmental Earth Sciences

, Volume 61, Issue 7, pp 1401–1417 | Cite as

Analysis of the degree of contamination and evolution in the last 100 years of the composition of the bed sediments of the Anllóns Basin

  • Rosa Devesa-ReyEmail author
  • M. T. Barral
  • J.-M. Jouanneau
  • F. Díaz-Fierros
Original Article


In this study, five cores of the Anllóns River bed sediments were analyzed in order to evaluate the downcore and downstream variations in their chemical composition. The first step was the evaluation of the metal distribution in the bulk (<2 mm) and fine fractions (<63 μm). The analysis revealed that most of the metals followed the same trend in both fractions, although the fine fraction presented usually higher concentrations. However, the concentration of both fractions tended to equalize with increasing contamination. No general increase was observed in the metal concentrations toward the surface which could be attributed to recent anthropogenic contributions. Instead, the distributions were homogeneous or peaked at various depths downcore. The most important historical feature was observed at the mouth of the river, at 96-cm depth, corresponding to the end of the eighteenth century. Upcore increased metal concentrations in parallel with increased fine fraction occurred from this depth, which were attributed to a bridge construction and consequent changes in sediment dynamics. As the metal concentrations can be influenced by variations in texture or other sediment characteristics, the second step was to evaluate the efficiency of several normalized indexes in the assessment of the degree of contamination, by calculating the enrichment factor (EF), the geoaccumulation index (I GEO) and the pollution load index (PLI). The EFs obtained were <10, thus revealing little anthropogenic inputs to the basin. The I GEO produced higher values when compared with the EFs. Instead of absolute EF or I GEO absolute values, the use of cumulative probability plots allowed identifying more accurately potential outliers indicating contamination. Only one population was identified for Zn and Pb, with a reduced number of outliers at the highest concentrations for Pb. As shown, a more complex plot with the outliers identified at C4 and C5. Finally, the PLI allowed determining the absence of a significant contamination in the bed sediments. The bioavailable and non-geogenic fractions contribute up to a 90% of the total concentrations in the case of As and Cu, and showed similar (dissimilar) profiles in comparison with total metals. Also, the quality guidelines were surpassed, so the high solubility of As, Zn, Pb and Ni in the sediments revealed the need to monitor the bed sediment quality of the Anllóns River.


Sediments Cores Organic carbon Heavy metals 210Pb 



The Science and Education Ministry of Spain (MEC, REN 2003-08673/CGL2007-62928) financed the present study.


  1. Allegret A, de Leon MIP (1987) U–Pb dating of Sisargas orthogneiss (Galicia, NW Spain)—New evidence of a Precambrian basement in the northwestern part of the Iberian Peninsula. Neues Jahrbuch Fur Mineralogie-Monatshefte 8:355–368Google Scholar
  2. Álvarez-Iglesias P, Quintana B, Rubio B, Pérez-Arlucea M (2007) Sedimentation rates and trace metal input history in intertidal sediments from San Simón Bay (Ría de Vigo, NW Spain) derived from 210Pb and 137Cs chronology. J Environ Radioact 98:229–250. doi: 10.1016/j.jenvrad.2007.05.001 CrossRefGoogle Scholar
  3. Andrade ML, Marcet MJ, Montero MJ (1997) Origin and spatial and vertical distribution of Cd and Cr in sediment cores in Vigo Ría (Spain). Contaminated soils. In: Proceedings of the 3rd international conference on biochemistry of trace elements. INRA, ParisGoogle Scholar
  4. Barreiro R, Real C, Carballeira A (1994) Heavy metals in sediment cores from a NW Spain estuary. Bull Environ Contam Toxicol 53(3):368–373. doi: 10.1007/BF00197228 CrossRefGoogle Scholar
  5. Birch G, Siaka M, Owens C (1999) The source of anthropogenic heavy metals in fluvial sediments of rural catchment: Cox River, Australia. Water Air Soil Pollut 126:13–25. doi: 10.1023/A:1005258123720 CrossRefGoogle Scholar
  6. Bubb JM, Lester JN (1994) Anthropogenic heavy metal inputs to lowland river systems. A case study: the River Stour, UK. Water Air Soil Pollut 78:279–296. doi: 10.1007/BF00483037 CrossRefGoogle Scholar
  7. Decree 72/2004 (2004) Relative to the areas of special protection of the natural resources of Galicia (in Spanish). Galician Official Bulletin (DOG), 69 ppGoogle Scholar
  8. Devesa-Rey R, Moldes AB, Díaz-Fierros F, Barral MT (2008a) Toxicity of Anllóns River sediment extracts using microtox and the zucconi phytotoxicity test. Bull Environ Contam Toxicol 80(3):225–230. doi: 10.1007/s00128-007-9350-0 CrossRefGoogle Scholar
  9. Devesa-Rey R, Paradelo R, Díaz-Fierros F, Barral MT (2008b) Fractionation and bioavailability of arsenic in the bed sediments of the Anllóns River (NW Spain). Water Air Soil Pollut 195:189–199CrossRefGoogle Scholar
  10. Devesa-Rey R, Díaz-Fierros F, Barral MT (2009a) Normalization strategies for river bed sediments: a graphical approach. Microchem J. doi: 10.1016/j.microc.2008.12.004
  11. Devesa-Rey R, Iglesias ML, Díaz-Fierros F, Barral MT (2009b) Total phosphorus distribution and bioavailability in the bed sediments of an Atlantic Basin (Galicia, NW Spain): spatial distribution and vertical profiles. Water Air Soil Pollut (in press)Google Scholar
  12. Durham RW, Joshi SR (1980) Recent sedimentation rates 210Pb fluxes and particle settling velocities in Lake Huron, Laurentian Great Lakes. Chem Geol 31:53–66. doi: 10.1016/0009-2541(80)90067-4 CrossRefGoogle Scholar
  13. Elberling B, Asmund G, Kunzendorf H, Krogstad EJ (2002) Geochemical trends in metal-contaminated fiord sediments near a former lead–zinc mine in West Greenland. Appl Geochem 17(4):493–502. doi: 10.1016/S0883-2927(01)00119-6 CrossRefGoogle Scholar
  14. Environment Canada (1994) Interim sediment quality assessment values. Manuscript report no. ECD. Ecosystem Conservation Directorate, Environment Canada, Ottawa, CanadaGoogle Scholar
  15. Fox M, Johnson WS, Jones SR, Leah RT, Copplestone D (1999) The use of sediment cores from stable and developing salt marshes to reconstruct historical contamination profiles in the Mersey Estuary, UK. Mar Environ Res 47(4):311–329. doi: 10.1016/S0141-1136(98)00123-8 CrossRefGoogle Scholar
  16. Gascó C, Anton MP, Pozuelo M (2006) Distribution and inventories of fallout radionuclides (239 + 240Pu, 137Cs) and 210Pb to study the filling velocity of salt marshes in Doñana National Park (Spain). J Environ Radioact 89(2):159–171CrossRefGoogle Scholar
  17. Ghrefat H, Yusuf N (2006) Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan. Chemosphere 65(11):2114–2121CrossRefGoogle Scholar
  18. Guitián F, Carballas T (1976) Técnicas de análisis de suelos (Soil analysis techniques). Pico Sacro (ed.)Google Scholar
  19. Gupta LP, Kawahata H (2006) Downcore diagenetic changes in organic matter and implications for paleoproductivity estimates. Global Planet Change 53(1–2):122–136CrossRefGoogle Scholar
  20. Hanna K (2007) Adsorption of aromatic carboxylate compounds on the surface of synthesized iron oxide-coated sands. Appl Geochem 22(9):2045–2053CrossRefGoogle Scholar
  21. Horowitz AJ (1991) A primer on sediment-trace element chemistry. CRC Press, 2nd edn, 144Google Scholar
  22. Ingersoll CG, Haverland PS, Brunson EL, Canfield TJ, Dwyer FJ, Henke CE, Kemble NE, Mount DR, Fox RG (1996) Calculation and evaluation of sediment effect concentrations for the amphipod Hyalella azteca and the midge Chironomus riparius. J Great Lakes Res 22(3):602–623CrossRefGoogle Scholar
  23. Irabien MJ, Cearreta A, Leorri E, Gómez J, Viguri J (2008) A 130 year record of pollution in the Suances estuary (southern Bay of Biscay): implications for environmental management. Mar Pollut Bull 56(10):1719–1727CrossRefGoogle Scholar
  24. Jouanneau JM, Weber O, Drago T (2002) Recent sedimentation and sedimentary budgets on the western Iberian shelf. Prog Oceanogr 52(2–4):261–275CrossRefGoogle Scholar
  25. Koide M, Bruland KW, Goldberg ED (1973) Th-228/Th-232 and Pb-210 geochronologies in marine and lake sediments. Geochim Cosmochim Acta 37(5):1171–1187CrossRefGoogle Scholar
  26. Leorri E, Horton BP, Cearreta A (2008) Development of a foraminifera-based transfer function in the Basque marshes, N. Spain: implications for sea-level studies in the Bay of Biscay. Mar Geol 251(1-2):60–74CrossRefGoogle Scholar
  27. Long ER, Macdonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19(1):81–97CrossRefGoogle Scholar
  28. Lorenzo F, Alonso A, Pellicer MJ, Pagés JL, Pérez-Arlucea M (2007) Historical analysis of heavy metal pollution in three estuaries on the north coast of Galicia (NW Spain). Environ Geol 52(4):789–802CrossRefGoogle Scholar
  29. Moalla SMN, Soltan ME, Rashed MN, Fawzy EM (2006) Evaluation of dilute hydrochloric acid and acid ammonium oxalate as extractants for some heavy metals from Nile River sediments. Chem Ecol 22(4):313–327CrossRefGoogle Scholar
  30. Müller G (1979) Schwermetalle in den Sedimenten des Rheins-Veränderungen seit. Umschav 79:133–149Google Scholar
  31. Murray KS (1995) Statistical comparisons of heavy-metal concentrations in river sediments. Environ Geol 27:54–58CrossRefGoogle Scholar
  32. NFESC (2003) Guidance for environmental background analysis, vol II: sedimentGoogle Scholar
  33. Persaud D, Jaagumagi R, Hayton A (1989) Development of provincial sediment quality guidelines. Ontario Ministry of the Environment, Water Resources Branch, Aquatic Biology Section, TorontoGoogle Scholar
  34. Persaud D, Jaagumagui R, Hayton A (1992) Guidelines for the protection and management on aquatic sediment quality in Ontario. Ontario Ministry of the Environment and Energy, OntarioGoogle Scholar
  35. Pratson LF, Hutton EWH, Kettner AJ (2007) The impact of floods and storms on the acoustic reflectivity of the inner continental shelf: a modelling assessment. Cont Shelf Res 27(3–4):542–559CrossRefGoogle Scholar
  36. Radakovitch O (1995) Etude du transfert et du dépôt du matériel particulaire par le polonium 210 et le plomb 210. Application aux marges continentales du Golfe de Gascogne (NE Atlantique) et du Golfe du Lion (NW Méditerranée). Doctoral thesis, Université Perpignan, FranceGoogle Scholar
  37. Robbins JA, Edgington DN, Kemp ALW (1978) Comparative 210Pb, 137Cs, and pollen geochronologies of sediments from Lakes Ontario and Erie. Q Res 10(2):256–278CrossRefGoogle Scholar
  38. Rubinos D, Barral MT, Ruíz B (2003) Phosphate and arsenate retention in sediments of the Anllóns river (northwest Spain). Water Sci Technol 48(10):159–166Google Scholar
  39. Sabatier P, Dezileau L, Condomines M (2008) Reconstruction of paleostorm events in a coastal lagoon (Hérault, South of France). Mar Geol 251(3–4):224–232CrossRefGoogle Scholar
  40. Salomons W, De Rooij NM, Kerdijk H, Bril J (1987) Sediments as sources for contaminants? Hydrobiologia 149:13–30CrossRefGoogle Scholar
  41. Santos-Echeandia J, Laglera LM, Prego R, van den Berg CMG (2008) Copper speciation in continental inputs to the Vigo Ria: sewage discharges versus river fluxes. Mar Pollut Bull 56(2):308–317CrossRefGoogle Scholar
  42. Schulte L (2002) Climatic and human influence on river systems and glacier fluctuations in southeast Spain since the Last Glacial Maximum. Q Int 93–94:85–100CrossRefGoogle Scholar
  43. Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Losung. Zeitschrift fur Pflanzenernahrung und Bodenkunde 105:844–850Google Scholar
  44. Shuman LM (1982) Separating soil iron- and manganese-oxide fractions for microelement analysis. Soil Sci Soc Am J 46(5):1099–1102CrossRefGoogle Scholar
  45. Snape I, Scouller RC, Stark SC, Stark J, Riddle MJ, Gore DB (2004) Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments. Chemosphere 57(6):491–504CrossRefGoogle Scholar
  46. Soto-Jiménez MF, Paez-Osuna F (2008) Diagenetic processes on metals in hypersaline mudflat sediments from a subtropical saltmarsh (SE Gulf of California): postdepositional mobility and geochemical fractions. Appl Geochem 23(5):1202–1217CrossRefGoogle Scholar
  47. Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39(6):611–627CrossRefGoogle Scholar
  48. Szefer P, Glasby GP, Stüben D (1999) Distribution of selected heavy metals and rare earth elements in surficial sediments from the Polish sector of the Vistula Lagoon. Chemosphere 39(15):2785–2798CrossRefGoogle Scholar
  49. Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgolander Meeresuntersuchungen 33(1-4):566–575CrossRefGoogle Scholar
  50. Tuncel SG, Tugrul S, Topal T (2007) A case study on trace metals in surface sediments and dissolved inorganic nutrients in surface water of ölüdeniz Lagoon-Mediterranean, Turkey. Water Res 41(2):365–372CrossRefGoogle Scholar
  51. USEPA (2000) Guidance for data quality assessment: practical methods for data analysisGoogle Scholar
  52. Vaalgamaa S, Korhola A (2004) Searching for order in chaos: a sediment stratigraphical study of a multiple-impacted bay of the Baltic Sea. Estuar Coast Shelf Sci 59:319–332CrossRefGoogle Scholar
  53. Viguri JR, Irabien MJ, Yusta I (2007) Physico-chemical and toxicological characterization of the historic estuarine sediments: a multidisciplinary approach. Environ Int 33(4):436–444CrossRefGoogle Scholar
  54. Zourarah B, Maanan M, Carruesco C, Aajjane A, Mehdi K, Conceição Freitas M (2007) Fifty-year sedimentary record of heavy metal pollution in the lagoon of Oualidia (Moroccan Atlantic coast). Estuar Coast Shelf Sci 72(1–2):359–369CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Rosa Devesa-Rey
    • 1
    Email author
  • M. T. Barral
    • 1
  • J.-M. Jouanneau
    • 2
  • F. Díaz-Fierros
    • 1
  1. 1.Departamento de Edafología y Química Agrícola, Facultad de FarmaciaUSCSantiago de CompostelaSpain
  2. 2.Département de Géologie et OcéanographieUMR 5805 Environnements et Paléoenvironnements Oceaniques (EPOC)Talence CedexFrance

Personalised recommendations