Skip to main content

Advertisement

Log in

Hydrological modeling in the karst area, Rižana spring catchment, Slovenia

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Karst aquifers are known for their heterogeneity and irregular complex flow patterns which make them more difficult to model and demand specific modeling approaches. This paper presents one such approach which is based on a conceptual model. The model was applied in a karst area of the catchment of Rižana spring (200 km²). It is based on the MIKE SHE code and incorporates the main hydrological processes and geological features of the karst aquifer (diffuse and concentrated infiltration, allogenic recharge, quick and slow groundwater flow, shifting groundwater divides and groundwater outflow from the catchment area). Modeling of evapotranspiration and flow in the upper part of the unsaturated zone is more detailed. For the modeling of groundwater flow in the karst aquifer, a conceptual model was applied which uses drainage function for the simulation of groundwater flow through large conduits (karst channels and large fissures). The model was calibrated and validated against the observed Rižana spring discharge which represents a measured response of the aquifer. The results of validation show that the model is able to adequately simulate temporal evolution of the spring discharge, measured by Nash–Sutcliffe coefficient (0.82) as well as overall water balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbott MB, Bathurst JC, Cunge JA, O’Connell PE, Rasmussen J (1986a) An introduction to the european hydrological system—Systeme hydrologique europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system. J Hydrol 87(1–2):45–59. doi:10.1016/0022-1694(86)90114-9

    Article  Google Scholar 

  • Abbott MB, Bathurst JC, Cunge JA, O’Connell PE, Rasmussen J (1986b) An introduction to the european hydrological system—Systeme hydrologique europeen, “SHE”, 2: Structure of a physically-based, distributed modelling system. J Hydrol 87(1–2):61–77. doi:10.1016/0022-1694(86)90115-0

    Article  Google Scholar 

  • ARSO (2003) Meteorological and hydrological data. Environment Agency of the Republic of Slovenia

  • Barrett ME, Charbeneau RJ (1997) A parsimonious model for predicting flow in a karst aquifer. J Hydrol 196(1–4):47–65. doi:10.1016/S0022-1694(96)03339-2

    Article  Google Scholar 

  • Bonacci O (1995) Ground water behaviour in karst: example of the Ombla Spring (Croatia). J Hydrol 165(1–4):113–134. doi:10.1016/0022-1694(94)02577-X

    Article  Google Scholar 

  • CPVO (2001) Digital pedological map of Slovenia in scale 1:25.000. Centre for Pedology and Environmental Protection and Ministry of Agriculture, Forestry and Food

  • Cvijić J (1924–1926) Geomorfologija : morphologie terrestre. Državna štamparija Kraljevine Srba, Hrvata i Slovenaca, Beograd, 506 p

  • Denić-Jukić V, Jukić D (2003) Composite transfer functions for karst aquifers. J Hydrol 274(1–4):80–94. doi:10.1016/S0022-1694(02)00393-1

    Article  Google Scholar 

  • DHI (2000) MIKE SHE water movement user manual. DHI Water & Environment, Horsholm

  • Doctor DH (2008) Hydrologic connections and dynamics of water movement in the classical Karst (Kras) aquifer: evidence from frequent chemical and stable isotope sampling. Acta Carsologica 37(1):101–123

    Google Scholar 

  • Dreiss SJ (1989a) Regional-scale transport in a karst aquifer part 1. Component separation of springflow hydrographs. Water Resour Res 25(1):117–125. doi:10.1029/WR025i001p00117

    Article  Google Scholar 

  • Dreiss SJ (1989b) Regional-scale transport in a karst aquifer part 2. Linear systems and time moment analysis. Water Resour Res 25(1):126–134. doi:10.1029/WR025i001p00126

    Article  Google Scholar 

  • Eisenlohr L, Bouzelboudjen M, Király L, Rossier Y (1997) Numerical versus statistical modelling of natural response of a karst hydrogeological system. J Hydrol 202(1–4):244–262. doi:10.1016/S0022-1694(97)00069-3

    Article  Google Scholar 

  • Fleury P, Plagnes V, Bakalowicz M (2007) Modelling of the functioning of karst aquifers with a reservoir model: Application to Fontaine de Vaucluse (South of France). J Hydrol 345(1–2):38–49. doi:10.1016/j.jhydrol.2007.07.014

    Article  Google Scholar 

  • Ford DC, Williams PW (1989) Karst geomorphology and hydrology. Unwin Hyman, London 601 p

    Google Scholar 

  • Halihan T, Wicks CM (1998) Modeling of storm responses in conduit flow aquifers with reservoirs. J Hydrol 208(1–2):82–91. doi:10.1016/S0022-1694(98)00149-8

    Article  Google Scholar 

  • Halihan T, Wicks CM, Engeln JF (1998) Physical response of a karst drainage basin to flood pulses: example of the Devil’s Icebox cave system (Missouri-USA). J Hydrol 204(1–4):24–36. doi:10.1016/S0022-1694(97)00104-2

    Article  Google Scholar 

  • Jamnik B, Refsgaard A, Janža M, Kristensen M (2001) Water resources management model for Ljubljana City. Paper presented at the 4th DHI Software Conference, Elsinore, June 6–8

  • Janža M (2005a) Land use determination using satellite image classification for the purposes of hydrological modelling in the Rižana spring catchment. Geologija 48(1):153–159 (in Slovene, English abstr.)

    Google Scholar 

  • Janža M (2005b) Modelling the recharge of the aquifer in the Rižana catchment from Brkini area. RMZ Mater Geoenviron 5(4):737–752 (in Slovene, English abstr.)

    Google Scholar 

  • Janža M (2006) Modelling regional aquifer recharge using remote sensing methods. PhD, Geological Survey of Slovenia, Ljubljana (in Slovene, English abstr.)

  • Jeannin P-Y, Sauter M (eds) (1998) Modelling in karst systems: Bulletin d’Hydroge’ologie, 16:241 p

  • Kiraly L (1998) Modelling karst aquifers by the combined discrete channel and continuum approach. In: Jeannin P-Y, Sauter M (eds) Modelling in karst systems: Bulletin d’Hydroge’ologie, 16:77–98

  • Komatina M (1984) Hydrogeologic features of the Dinaric karst. In: Mijatović BF (ed) Hydrogeology of the Dinaric karst international contributions to hydrogeology, vol 4. Heise, Hannover, pp 55–73

    Google Scholar 

  • Kristensen KJ, Jensen SE (1975) A model for estimating actual evapotranspiration from potential evapotranspiration. Nordic Hydrol 6:170–188

    Google Scholar 

  • Kristensen M, Andersson U, Sorensen HR, Refsgaard A, Gustavsson L (2000a) Water resources management model for Ljubljansko Polje and Ljubljansko Barje—final report. DHI Water & Environment, Horsholm

    Google Scholar 

  • Kristensen M, Andersson U, Sorensen HR, Refsgaard A (2000b) Water resources management model for Ljubljansko Polje and Ljubljansko Barje—model report. DHI Water & Environment, Horsholm

    Google Scholar 

  • Krivic P, Bricelj M, Trišič N, Zupan M (1987) Water tracing in the Rižana spring ground water basin. Acta carsologica 16:83–104 (in Slovene)

    Google Scholar 

  • Labat D, Ababou R, Mangin A (2000) Rainfall-runoff relations for karstic springs. Part I: convolution and spectral analyses. J Hydrol 238(3–4):123–148. doi:10.1016/S0022-1694(00)00321-8

    Article  Google Scholar 

  • Lapanje A, Prestor J (2003) L’eau thermale dans les calcaires Paléogenès et Crétacés de la côte slovène. Circulations hydrothermales en terrains calcaires, 10ème journée technique du Comité national français de l’Association Internationale des Hydrogéologues, Carcassonne, 28 Novembre 2003, pp 31–38

  • Long JCS, Billaux DM (1987) From field data to fracture network modeling: an exemple incorporating spatial structure. Water Resour Res 23(7):1201–1216. doi:10.1029/WR023i007p01201

    Article  Google Scholar 

  • Mangin A (1975) Contribution à l’étude hydrodinamique des aquiferes karstiques: DES thesis. Ann Speleol 29(3):282–332

    Google Scholar 

  • Milanovic´ PT (2000) Geological engineering in karst: dams, reservoirs, grouting, groundwater protection, water tapping, tunneling. Zebra Publishing Ltd., Beograd, p 347

    Google Scholar 

  • Nash IE, Sutcliffe IV (1970) River flow forecasting through conceptual models, Part 1: a discussion of principles. J Hydrol 10(3):282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Oštir K, Podobnikar T, Stančič Z, Mlinar J (2000) Digital elevation model InSAR 25. Geodetski vestnik 44(4):374–383 (in Slovene)

    Google Scholar 

  • Palmer AN, Palmer MV, Sasowsky ID (eds) (1999) Karst Modeling, Special Publication No. 5. Karst Waters Institute, Charles Town

  • Placer L (1998) Contribution to the macrotectonic subdivision of the border region between Southern Alps and External Dinarides. Geologija 41:223–255

    Google Scholar 

  • Placer L (2007) Kraški rob (landscape term), Geologic section along the motorway Kozina–Koper (Capodistria). Geologija 50(1):29–44

    Google Scholar 

  • Prestor J (1992) Contribution to the study of relationship between precipitation and outflow from karst aquifer. MSc, Department of Geology, University of Ljubljana, Slovenia (in Slovene)

  • Prestor J, Štrucl S, Pungartnik M (2003) Mežica lead and zinc mine closure impact on hydrogeological conditions in upper Mežica valley. RMZ Mater Geoenviron 50(1):313–316

    Google Scholar 

  • Quinn JJ, Tomasko D (2000) A numerical approach to simulating flow in karst aquifers. In: Sasowsky I, Wicks C (eds) Groundwater flow and contaminant transport in carbonate aquifers. A. A. Balkem, Rotterdam, pp 147–156

    Google Scholar 

  • Quinn JJ, Tomasko D, Glennon MA, Miller SF, McGinnis LD (1998) Using MODFLOW drains to simulate groundwater flow in a karst environment. In: Proceedings of MODFLOW ‘98 international ground water modeling center, Golden, pp 105–112

  • Quinn JJ, Tomasko D, Kuiper JA (2005) The role of MODFLOW in numerical modeling of karst flow systems. In: Kuniansky EL (ed) US Geological Survey Karst Interest Group Proceedings, Rapid City, South Dakota, September 12–15, USGS, Reston

  • Quinn JJ, Tomasko D, Kuiper JA (2006) Modeling complex flow in a karst aquifer. Sed Geol 184(3–4):343–351. doi:10.1016/j.sedgeo.2005.11.009

    Article  Google Scholar 

  • Refsgaard JC (1996) Terminology, modelling protocol and classification of hydrological model codes. In: Abbott MB, Refsgaard JC (eds) Distributed Hydrological Modelling. Kluwer Academic Publishers, Dordrecht, pp 17–39

    Google Scholar 

  • Refsgaard JC, Storm B (1996) Construction, calibration and validation of hydrological Models. In: Abbott MB, Refsgaard JC (eds) Distributed Hydrological Modelling. Kluwer Academic Publishers, Dordrecht, pp 41–54

    Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous medium. Physics 1:318–333. doi:10.1063/1.1745010

    Article  Google Scholar 

  • Sasowsky ID, Wicks CM (eds) (2000) Groundwater flow and contaminant transport in carbonate aquifers. A.A. Balkema Publisher, Roterdam

    Google Scholar 

  • Schaap MG, Leij FJ, van Genuchten MT (2001) ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251(3–4):163–176. doi:10.1016/S0022-1694(01)00466-8

    Article  Google Scholar 

  • Škorić A, Malez M, Adam M, Bašić F, Bogunović M, Cestar D, Martinović J, Mayer B, Miloš B, Vidaček Ž (1987) Pedosphere of Istra (with pedological map of Istra). Projektni savjet pedološke karte Hrvatske, Zagreb [in Croatian]

  • Terzić J, Šumanovac F, Buljan R (2007) An assessment of hydrogeological parameters on the karstic island of Dugi Otok, Croatia. J Hydrol 343(1–2):29–42. doi:10.1016/j.jhydrol.2007.06.008

    Article  Google Scholar 

  • Teutsch G, Sauter M (1997) Distributed parameter modelling approaches in karst-hydrological investigations. In: Jeannin PY, Sauter M (ed) Modelling in karst systems - 6th Conf. on Limestone Hydrology and Fissured Media, pp 19-23

  • Trček B (2007) How can the epikarst zone influence the karst aquifer hydraulic behaviour? Env Geol 51(5):761–765. doi:10.1007/s00254-006-0387-x

    Google Scholar 

  • Weiss M, Gvirtzman H (2007) Estimating ground water recharge using flow models of perched karstic aquifers. Ground Water 45(6):761–773. doi:10.1111/j.1745-6584.2007.00360.x

    Article  Google Scholar 

  • White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, New York, p 464

    Google Scholar 

  • Zupančič B (1995) Climatography of Slovenia, Precipitation (1961–1990). Hydrometeorological Institute of Slovenia, Ljubljana (in Slovene)

Download references

Acknowledgments

This research was supported in part by the Slovenian Research Agency under the Research project Z1-9719-0215-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitja Janža.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janža, M. Hydrological modeling in the karst area, Rižana spring catchment, Slovenia. Environ Earth Sci 61, 909–920 (2010). https://doi.org/10.1007/s12665-009-0406-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-009-0406-9

Keywords

Navigation