Environmental Earth Sciences

, Volume 61, Issue 5, pp 909–920 | Cite as

Hydrological modeling in the karst area, Rižana spring catchment, Slovenia

  • Mitja JanžaEmail author
Original Article


Karst aquifers are known for their heterogeneity and irregular complex flow patterns which make them more difficult to model and demand specific modeling approaches. This paper presents one such approach which is based on a conceptual model. The model was applied in a karst area of the catchment of Rižana spring (200 km²). It is based on the MIKE SHE code and incorporates the main hydrological processes and geological features of the karst aquifer (diffuse and concentrated infiltration, allogenic recharge, quick and slow groundwater flow, shifting groundwater divides and groundwater outflow from the catchment area). Modeling of evapotranspiration and flow in the upper part of the unsaturated zone is more detailed. For the modeling of groundwater flow in the karst aquifer, a conceptual model was applied which uses drainage function for the simulation of groundwater flow through large conduits (karst channels and large fissures). The model was calibrated and validated against the observed Rižana spring discharge which represents a measured response of the aquifer. The results of validation show that the model is able to adequately simulate temporal evolution of the spring discharge, measured by Nash–Sutcliffe coefficient (0.82) as well as overall water balance.


Karst aquifer Hydrological modeling MIKE SHE Rižana spring Slovenia 



This research was supported in part by the Slovenian Research Agency under the Research project Z1-9719-0215-06.


  1. Abbott MB, Bathurst JC, Cunge JA, O’Connell PE, Rasmussen J (1986a) An introduction to the european hydrological system—Systeme hydrologique europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system. J Hydrol 87(1–2):45–59. doi: 10.1016/0022-1694(86)90114-9 CrossRefGoogle Scholar
  2. Abbott MB, Bathurst JC, Cunge JA, O’Connell PE, Rasmussen J (1986b) An introduction to the european hydrological system—Systeme hydrologique europeen, “SHE”, 2: Structure of a physically-based, distributed modelling system. J Hydrol 87(1–2):61–77. doi: 10.1016/0022-1694(86)90115-0 CrossRefGoogle Scholar
  3. ARSO (2003) Meteorological and hydrological data. Environment Agency of the Republic of SloveniaGoogle Scholar
  4. Barrett ME, Charbeneau RJ (1997) A parsimonious model for predicting flow in a karst aquifer. J Hydrol 196(1–4):47–65. doi: 10.1016/S0022-1694(96)03339-2 CrossRefGoogle Scholar
  5. Bonacci O (1995) Ground water behaviour in karst: example of the Ombla Spring (Croatia). J Hydrol 165(1–4):113–134. doi: 10.1016/0022-1694(94)02577-X CrossRefGoogle Scholar
  6. CPVO (2001) Digital pedological map of Slovenia in scale 1:25.000. Centre for Pedology and Environmental Protection and Ministry of Agriculture, Forestry and FoodGoogle Scholar
  7. Cvijić J (1924–1926) Geomorfologija : morphologie terrestre. Državna štamparija Kraljevine Srba, Hrvata i Slovenaca, Beograd, 506 pGoogle Scholar
  8. Denić-Jukić V, Jukić D (2003) Composite transfer functions for karst aquifers. J Hydrol 274(1–4):80–94. doi: 10.1016/S0022-1694(02)00393-1 CrossRefGoogle Scholar
  9. DHI (2000) MIKE SHE water movement user manual. DHI Water & Environment, HorsholmGoogle Scholar
  10. Doctor DH (2008) Hydrologic connections and dynamics of water movement in the classical Karst (Kras) aquifer: evidence from frequent chemical and stable isotope sampling. Acta Carsologica 37(1):101–123Google Scholar
  11. Dreiss SJ (1989a) Regional-scale transport in a karst aquifer part 1. Component separation of springflow hydrographs. Water Resour Res 25(1):117–125. doi: 10.1029/WR025i001p00117 CrossRefGoogle Scholar
  12. Dreiss SJ (1989b) Regional-scale transport in a karst aquifer part 2. Linear systems and time moment analysis. Water Resour Res 25(1):126–134. doi: 10.1029/WR025i001p00126 CrossRefGoogle Scholar
  13. Eisenlohr L, Bouzelboudjen M, Király L, Rossier Y (1997) Numerical versus statistical modelling of natural response of a karst hydrogeological system. J Hydrol 202(1–4):244–262. doi: 10.1016/S0022-1694(97)00069-3 CrossRefGoogle Scholar
  14. Fleury P, Plagnes V, Bakalowicz M (2007) Modelling of the functioning of karst aquifers with a reservoir model: Application to Fontaine de Vaucluse (South of France). J Hydrol 345(1–2):38–49. doi: 10.1016/j.jhydrol.2007.07.014 CrossRefGoogle Scholar
  15. Ford DC, Williams PW (1989) Karst geomorphology and hydrology. Unwin Hyman, London 601 pGoogle Scholar
  16. Halihan T, Wicks CM (1998) Modeling of storm responses in conduit flow aquifers with reservoirs. J Hydrol 208(1–2):82–91. doi: 10.1016/S0022-1694(98)00149-8 CrossRefGoogle Scholar
  17. Halihan T, Wicks CM, Engeln JF (1998) Physical response of a karst drainage basin to flood pulses: example of the Devil’s Icebox cave system (Missouri-USA). J Hydrol 204(1–4):24–36. doi: 10.1016/S0022-1694(97)00104-2 CrossRefGoogle Scholar
  18. Jamnik B, Refsgaard A, Janža M, Kristensen M (2001) Water resources management model for Ljubljana City. Paper presented at the 4th DHI Software Conference, Elsinore, June 6–8Google Scholar
  19. Janža M (2005a) Land use determination using satellite image classification for the purposes of hydrological modelling in the Rižana spring catchment. Geologija 48(1):153–159 (in Slovene, English abstr.)Google Scholar
  20. Janža M (2005b) Modelling the recharge of the aquifer in the Rižana catchment from Brkini area. RMZ Mater Geoenviron 5(4):737–752 (in Slovene, English abstr.)Google Scholar
  21. Janža M (2006) Modelling regional aquifer recharge using remote sensing methods. PhD, Geological Survey of Slovenia, Ljubljana (in Slovene, English abstr.)Google Scholar
  22. Jeannin P-Y, Sauter M (eds) (1998) Modelling in karst systems: Bulletin d’Hydroge’ologie, 16:241 pGoogle Scholar
  23. Kiraly L (1998) Modelling karst aquifers by the combined discrete channel and continuum approach. In: Jeannin P-Y, Sauter M (eds) Modelling in karst systems: Bulletin d’Hydroge’ologie, 16:77–98Google Scholar
  24. Komatina M (1984) Hydrogeologic features of the Dinaric karst. In: Mijatović BF (ed) Hydrogeology of the Dinaric karst international contributions to hydrogeology, vol 4. Heise, Hannover, pp 55–73Google Scholar
  25. Kristensen KJ, Jensen SE (1975) A model for estimating actual evapotranspiration from potential evapotranspiration. Nordic Hydrol 6:170–188Google Scholar
  26. Kristensen M, Andersson U, Sorensen HR, Refsgaard A, Gustavsson L (2000a) Water resources management model for Ljubljansko Polje and Ljubljansko Barje—final report. DHI Water & Environment, HorsholmGoogle Scholar
  27. Kristensen M, Andersson U, Sorensen HR, Refsgaard A (2000b) Water resources management model for Ljubljansko Polje and Ljubljansko Barje—model report. DHI Water & Environment, HorsholmGoogle Scholar
  28. Krivic P, Bricelj M, Trišič N, Zupan M (1987) Water tracing in the Rižana spring ground water basin. Acta carsologica 16:83–104 (in Slovene)Google Scholar
  29. Labat D, Ababou R, Mangin A (2000) Rainfall-runoff relations for karstic springs. Part I: convolution and spectral analyses. J Hydrol 238(3–4):123–148. doi: 10.1016/S0022-1694(00)00321-8 CrossRefGoogle Scholar
  30. Lapanje A, Prestor J (2003) L’eau thermale dans les calcaires Paléogenès et Crétacés de la côte slovène. Circulations hydrothermales en terrains calcaires, 10ème journée technique du Comité national français de l’Association Internationale des Hydrogéologues, Carcassonne, 28 Novembre 2003, pp 31–38Google Scholar
  31. Long JCS, Billaux DM (1987) From field data to fracture network modeling: an exemple incorporating spatial structure. Water Resour Res 23(7):1201–1216. doi: 10.1029/WR023i007p01201 CrossRefGoogle Scholar
  32. Mangin A (1975) Contribution à l’étude hydrodinamique des aquiferes karstiques: DES thesis. Ann Speleol 29(3):282–332Google Scholar
  33. Milanovic´ PT (2000) Geological engineering in karst: dams, reservoirs, grouting, groundwater protection, water tapping, tunneling. Zebra Publishing Ltd., Beograd, p 347 Google Scholar
  34. Nash IE, Sutcliffe IV (1970) River flow forecasting through conceptual models, Part 1: a discussion of principles. J Hydrol 10(3):282–290. doi: 10.1016/0022-1694(70)90255-6 CrossRefGoogle Scholar
  35. Oštir K, Podobnikar T, Stančič Z, Mlinar J (2000) Digital elevation model InSAR 25. Geodetski vestnik 44(4):374–383 (in Slovene)Google Scholar
  36. Palmer AN, Palmer MV, Sasowsky ID (eds) (1999) Karst Modeling, Special Publication No. 5. Karst Waters Institute, Charles TownGoogle Scholar
  37. Placer L (1998) Contribution to the macrotectonic subdivision of the border region between Southern Alps and External Dinarides. Geologija 41:223–255Google Scholar
  38. Placer L (2007) Kraški rob (landscape term), Geologic section along the motorway Kozina–Koper (Capodistria). Geologija 50(1):29–44Google Scholar
  39. Prestor J (1992) Contribution to the study of relationship between precipitation and outflow from karst aquifer. MSc, Department of Geology, University of Ljubljana, Slovenia (in Slovene)Google Scholar
  40. Prestor J, Štrucl S, Pungartnik M (2003) Mežica lead and zinc mine closure impact on hydrogeological conditions in upper Mežica valley. RMZ Mater Geoenviron 50(1):313–316Google Scholar
  41. Quinn JJ, Tomasko D (2000) A numerical approach to simulating flow in karst aquifers. In: Sasowsky I, Wicks C (eds) Groundwater flow and contaminant transport in carbonate aquifers. A. A. Balkem, Rotterdam, pp 147–156Google Scholar
  42. Quinn JJ, Tomasko D, Glennon MA, Miller SF, McGinnis LD (1998) Using MODFLOW drains to simulate groundwater flow in a karst environment. In: Proceedings of MODFLOW ‘98 international ground water modeling center, Golden, pp 105–112Google Scholar
  43. Quinn JJ, Tomasko D, Kuiper JA (2005) The role of MODFLOW in numerical modeling of karst flow systems. In: Kuniansky EL (ed) US Geological Survey Karst Interest Group Proceedings, Rapid City, South Dakota, September 12–15, USGS, RestonGoogle Scholar
  44. Quinn JJ, Tomasko D, Kuiper JA (2006) Modeling complex flow in a karst aquifer. Sed Geol 184(3–4):343–351. doi: 10.1016/j.sedgeo.2005.11.009 CrossRefGoogle Scholar
  45. Refsgaard JC (1996) Terminology, modelling protocol and classification of hydrological model codes. In: Abbott MB, Refsgaard JC (eds) Distributed Hydrological Modelling. Kluwer Academic Publishers, Dordrecht, pp 17–39Google Scholar
  46. Refsgaard JC, Storm B (1996) Construction, calibration and validation of hydrological Models. In: Abbott MB, Refsgaard JC (eds) Distributed Hydrological Modelling. Kluwer Academic Publishers, Dordrecht, pp 41–54Google Scholar
  47. Richards LA (1931) Capillary conduction of liquids through porous medium. Physics 1:318–333. doi: 10.1063/1.1745010 CrossRefGoogle Scholar
  48. Sasowsky ID, Wicks CM (eds) (2000) Groundwater flow and contaminant transport in carbonate aquifers. A.A. Balkema Publisher, RoterdamGoogle Scholar
  49. Schaap MG, Leij FJ, van Genuchten MT (2001) ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251(3–4):163–176. doi: 10.1016/S0022-1694(01)00466-8 CrossRefGoogle Scholar
  50. Škorić A, Malez M, Adam M, Bašić F, Bogunović M, Cestar D, Martinović J, Mayer B, Miloš B, Vidaček Ž (1987) Pedosphere of Istra (with pedological map of Istra). Projektni savjet pedološke karte Hrvatske, Zagreb [in Croatian]Google Scholar
  51. Terzić J, Šumanovac F, Buljan R (2007) An assessment of hydrogeological parameters on the karstic island of Dugi Otok, Croatia. J Hydrol 343(1–2):29–42. doi: 10.1016/j.jhydrol.2007.06.008 CrossRefGoogle Scholar
  52. Teutsch G, Sauter M (1997) Distributed parameter modelling approaches in karst-hydrological investigations. In: Jeannin PY, Sauter M (ed) Modelling in karst systems - 6th Conf. on Limestone Hydrology and Fissured Media, pp 19-23Google Scholar
  53. Trček B (2007) How can the epikarst zone influence the karst aquifer hydraulic behaviour? Env Geol 51(5):761–765. doi: 10.1007/s00254-006-0387-x Google Scholar
  54. Weiss M, Gvirtzman H (2007) Estimating ground water recharge using flow models of perched karstic aquifers. Ground Water 45(6):761–773. doi: 10.1111/j.1745-6584.2007.00360.x CrossRefGoogle Scholar
  55. White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, New York, p 464Google Scholar
  56. Zupančič B (1995) Climatography of Slovenia, Precipitation (1961–1990). Hydrometeorological Institute of Slovenia, Ljubljana (in Slovene)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Geological Survey of SloveniaLjubljanaSlovenia

Personalised recommendations