Advertisement

Environmental Earth Sciences

, Volume 61, Issue 5, pp 899–907 | Cite as

Distribution and mobility of heavy metals in paddy soils of the Kočani Field in Macedonia

  • Nastja RoganEmail author
  • Tadej Dolenec
  • Todor Serafimovski
  • Goran Tasev
  • Matej Dolenec
Original Article

Abstract

Contamination of soils with heavy metals is widespread and poses a long-term risk to ecosystem health. Abandoned and active mining sites contain residues from ore-processing operations that are characterised by high concentrations of heavy metals. The distribution and mobility characteristics of heavy metals (As, Cd, Cu, Pb, and Zn) in paddy soil samples from Kočani Field (Macedonia) using ICP-EAS and a sequential extraction procedure was evaluated. The results indicate that highly elevated concentrations of As, Cd, Cu, Pb, and Zn were detected in the paddy soil sample from location VII-2 in the vicinity of Zletovo mine and Zletovska river in the western part of Kočani Field, which drains the untreated acid mine waters and mine wastes from the active Zletovo mine. The degree of contamination based on index of geoaccumulation (I geo) from strong to weak in the paddy soils samples is Pb > As > Cd > Zn > Cu. The mobility potential of heavy metals in all paddy soil samples increases in the order As < Cu < Pb < Zn < Cd. According to the results of the anthropogenic impact on the paddy soils, a further study on the heavy metal concentrations in rice and other edible crops, the remediation process of the paddy soils and a dietary study of the local population are needed.

Keywords

Heavy metals Contamination Paddy soils Sequential extraction Kočani Field (Macedonia) 

Notes

Acknowledgments

The research was financially supported by the Slovenian Research Agency (ARRS), contract number 1000-05-310229.

References

  1. Bird G, Boewer PA, Macklin MG, Baltenan P, Driga B, Serban M, Zaharia S (2003) The solid state partitioning of contaminant metals and As in river channel sediments of the mining affected drainage basin, northwestern Romania and eastern Hungary. Appl Geochem 18:1583–1595. doi: 10.1016/S0883-2927(03)00078-7 CrossRefGoogle Scholar
  2. Dean JR (2007) Bioavailability, bioaccessibility and mobility of environmental contaminants, vol 92. Wiley, England, pp 106–292Google Scholar
  3. Dolenec T, Serafimovski T, Tasev G, Dobnikar M, Dolenec M, Rogan N (2007) Major and trace elements in paddy soil contaminated by Pb–Zn mining: a case study of Kočani Field, Macedonia. Environ Geochem Health 29:21–32. doi: 10.1007/s10653-006-9057-x CrossRefGoogle Scholar
  4. Filgueiras AV, Lavilla I, Bendicho C (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. J Environ Monit 4:823–857. doi: 10.1039/b207574c CrossRefGoogle Scholar
  5. Fuentes A, Llorens M, Saez J, Soler M, Ortuno J, Meseguer V (2004) Simple and sequential extraction of heavy metals from different sewage sludges. Chemosphere 54:1039–1047. doi: 10.1016/j.chemosphere.2003.10.029 CrossRefGoogle Scholar
  6. German Federal Ministry of the Environment (1992) Novelle zur Verordnung über das Aufringen von Klärschlamm (Bundesgesetzblatt)Google Scholar
  7. Jung MC (2001) Heavy metal contamination of soils and waters in and around the Imcheon Au-Ag mine, Korea. Appl Geochem 16:1369–1375. doi: 10.1016/S0883-2927(01)00040-3 CrossRefGoogle Scholar
  8. Kabata-Pendias A (1993) Behaviour properties of trace metals in soils. Appl Geochem 2:3–9. doi: 10.1016/S0883-2927(09)80002-4 CrossRefGoogle Scholar
  9. Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC Press, Boca RatonGoogle Scholar
  10. Kazi T, Jamali G, Kazi G, Arain M, Afridi H, Siddiqui A (2002) Evaluating the mobility of toxic metals in untreated industrial wastewater sludge using a BCR sequential procedure and a leaching test. Anal Bioanal Chem 374:255–261. doi: 10.1007/s00216-002-1482-9 CrossRefGoogle Scholar
  11. Korre A, Durucan S, Koutroumani A (2002) Quantitative-spatial assessment of the risks associated with high Pb loads in soils around Lavrio, Greece. Appl Geochem 17:1029–1045. doi: 10.1016/S0883-2927(02)00058-6 CrossRefGoogle Scholar
  12. Lee CG, Chon HT, Jung MC (2001) Heavy metal contamination in the vicinity of the Daduk Au-Ag-Pb-Zn mine in Korea. Appl Geochem 16:1377–1386. doi: 10.1016/S0883-2927(01)00038-5 CrossRefGoogle Scholar
  13. Li XD, Coles BJ, Ramsey MH, Thornton I (1995) Sequential extraction of soils for multielement analysis by ICP-AES. Chem Geol 124:109–123. doi: 10.1016/0009-2541(95)00029-L CrossRefGoogle Scholar
  14. Liu H, Probst A, Liao B (2005) Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci Total Environ 339:153–166. doi: 10.1016/j.scitotenv.2004.07.030 CrossRefGoogle Scholar
  15. Lu A, Zhang X (2005) Environmental geochemistry study of arsenic in Western Hunan mining area P.R. China. Environ Geochem Health 27:313–320. doi: 10.1007/s10653-004-5735-8 CrossRefGoogle Scholar
  16. Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. Geojournal 2:108–118Google Scholar
  17. Müller G (1979) Schwermetalle in den sedimentaen des Rheins-Veranderungen seit 1971. Umsch Wiss Tech 79:778–783Google Scholar
  18. Serafimovski T, Aleksandrov M (1995) Lead and zinc deposits and occurrences in the Republic of Macedonia. Special edition of RGF, No. 4, 387 pgs., with extended summary in English, StipGoogle Scholar
  19. Serafimovski T, Alderton DHM, Mullen B, Fairall K (2004) Pollution associated with metal mining in Macedonia. 32nd International Geological Congress, FLGoogle Scholar
  20. Singh M, Ansari AA, Müller G, Singh IB (1997) Heavy metals in freshly deposit sediments of the Gomati River (a tributary of the Ganga River): effects of human activities. Env Geol 29:246–252. doi: 10.1007/s002540050123 CrossRefGoogle Scholar
  21. Tack FMG, Verloo MG (1995) Chemical speciation and fractionation in soil and sediment heavy-metal analysis—a review. Int J Environ Anal Chem 59:225–238CrossRefGoogle Scholar
  22. Taylor SR, Mclennan SM (1995) The geochemical evolution of the continental crust. Rev Geeophys 33:611–627. doi: 10.1029/95RG00262 Google Scholar
  23. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851. doi: 10.1021/ac50043a017 CrossRefGoogle Scholar
  24. Uradni List RS (1996) Uredba o mejnih opozorilnih in kritičnih emisijskih vrednostih nevarnih snovi v tleh. Uradni list 68:5773–5774Google Scholar
  25. Ure AM (1996) Single extraction schemens for soil analysis and related applications. Sci Tot Environ 17:178–183Google Scholar
  26. Witte KM, Wanty RB, Ridley WI (2004) Engelman Spruce (Picea engelmannii) as a biological monitor of changes in soil metal loading related to past mining activity. Appl Geochem 19:1367–1376. doi: 10.1016/j.apgeochem.2004.01.022 CrossRefGoogle Scholar
  27. Wong SC, Li XD, Zhang G, Qi SH, Min YS (2002) Heavy metals in agricultural soils of the Pearl River Delta, South China. Environ Pollut 119:33–44. doi: 10.1016/S0269-7491(01)00325-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Nastja Rogan
    • 1
    Email author
  • Tadej Dolenec
    • 1
  • Todor Serafimovski
    • 2
  • Goran Tasev
    • 2
  • Matej Dolenec
    • 1
  1. 1.Department of Geology, Faculty of Natural Sciences and EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Faculty of Mining, Geology and PolytechnicsUniversity “Goce Delcev–Stip”StipMacedonia

Personalised recommendations