Skip to main content
Log in

Application of chemometric methods to analyze the distribution and chemical fraction patterns of metals in sediment from a metropolitan river

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Rivers in metropolitan areas are often highly polluted with materials that pose a threat to a large number of residents. Human influences lead to contaminants in metropolitan rivers having more complex sources than those in rural rivers. This complexity results in contamination that is unstable and rapidly changing. Here, the contents and chemical fractionation patterns of eleven toxic elements (As, Cd, Co, Cu, Cr, Mn, Ni, Pb, Zn, Y, and Hg) were evaluated in 13 samples collected from along the Beiyunhe River in Beijing, China. The results revealed that the metal contents were unevenly distributed along the river, with higher levels being observed in the downriver sites and the rendezvous sites. Additionally, more than 80% of the metals were found to be in the residual phase. The organic and sulfide phases were the most important extractable phases of most metals, with Ni, Co, Cu, and Cr primarily being associated with these phases and As, Cd, and Zn having a strong association with the iron/manganese oxide and hydroxide phases. Additionally, Mn was associated with the exchangeable and carbonate phases, with the lowest concentrations being observed in the organic and sulfide phases. Conversely, the metal exchangeable and carbonate phases were uniformly distributed throughout the river. Analysis of the metal sources revealed that particles input from the atmosphere comprised a considerable amount of the metals in the Beiyunhe River. However, these metals likely do not enter the sediment via atmospheric deposition directly, but rather through rainwater runoff into the river. The methods used in the present study will be useful in other studies that require analysis of complex data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abollino O, Aceto M, Malandrino M, Mentasti E, Sarzanini C, Barberis R (2002) Distribution and mobility of metals in contaminated sites Chemometric investigation of pollutant profiles. Environ Pollut 119(2):177–193. doi:10.1016/S0269-7491(01)00333-5

    Article  Google Scholar 

  • Baruah NK, Kotoky P, Bhattcharyya KG, Borah GC (1996) Metal speciation in Jhanji River sediments. Sci Total Environ 193:1–12. doi:10.1016/S0048-9697(96)05318-1

    Article  Google Scholar 

  • Blom G, Winkels HJ (1998) Modeling sediment accumulation and dispersion of contaminants in ljsselmeer (the Netherlands). Water Sci Tech 37(6–7):17–24. doi:10.1016/S0273-1223(98)00177-2

    Google Scholar 

  • Bordas F, Bourg ACM (1998) A critical evaluation of sample pretreatment for storage of contaminated sediments to be investigated for the potential mobility of their heavy metal load. Water Air Soil Pollut 103(1–4):137–149. doi:10.1023/A:1004952608950

    Article  Google Scholar 

  • Boughriet A, Proix N, Billon G, Recourt P, Ouddane B (2007) Environmental impacts of heavy metal discharges from a smelter in Deûle-canal sediments (Northern France): concentration levels and chemical fractionation. Water Air Soil Pollut 180:83–95. doi:10.1007/s11270-006-9252-5

    Article  Google Scholar 

  • Brereton RG (2003) Chemometrics: data analysis for the laboratory and chemical plant. Wiley, Bristol, pp 183–255

    Google Scholar 

  • Bro R, Smilde A (2003) Centering and scaling in component analysis. J Chemom 17:16–33. doi:10.1002/cem.773

    Article  Google Scholar 

  • Chavagnac V, German CR, Milton JA, Palmer MR (2005) Sources of REE in sediment cores from the Rainbow vent site (36°14′N, MAR). Chem Geol 216(3–4):329–352. doi:10.1016/j.chemgeo.2004.11.015

    Article  Google Scholar 

  • Chen ZL, Zhang YH, Ma CG, He FZ (1989) Regional contaminant features of suspended particulates in Beijing-Tianjin area. Environ Sci 10(4):24–27

    Google Scholar 

  • Chen TB, Zheng YM, Chen H, Zheng GD (2004) Background concentrations of soil heavy metals in Beijing. Environ Sci 25:117–122

    Google Scholar 

  • Cobelo-García A, Prego R (2004) Influence of point sources on trace metal contamination and distribution in a semi-enclosed industrial embayment: the Ferrol Ria (NW Spain). Estuar Coast Shelf Sci 60(4):695–703. doi:10.1016/j.ecss.2004.03.008

    Article  Google Scholar 

  • Cong Y, Chen YL, Yang ZF, Hou QY, Wang HC (2008) Dry and wet atmospheric deposition fluxes of elements in the Plain area of Beijing Municipality, China. Geol Bull China 27(2):257–264

    Google Scholar 

  • Davidson CM, Thomas RP, Mcvey SE, Perala R, Littlejohn D, Ure AM (1994) Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments. Anal Chim Acta 291:277–286. doi:10.1016/0003-2670(94)80023-5

    Article  Google Scholar 

  • Davidson CM, Urquhart GJ, Ajmone-Marsan F et al (2006) Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonized sequential extraction procedure. Anal Chim Acta 565:63–72. doi:10.1016/j.aca.2006.02.014

    Article  Google Scholar 

  • Deletic AB, Maksimovie CT (1998) Evaluation of water quality factors in storm runoff from paved areas. J Environ Eng 124(9):869–879. doi:10.1061/(ASCE)0733-9372(1998)124:9(869)

    Article  Google Scholar 

  • DelValls TÁ, Forja JM, González-Mazo E, Gómez-Parra A, Blasco J (1998) Determining contamination sources in marine sediments using multivariate analysis. Trends Anal Chem 17(4):181–192. doi:10.1016/S0165-9936(98)00017-X

    Article  Google Scholar 

  • Duran C, Soylak M, Bulut VN et al (2007) Speciation of Cr(III) and Cr(VI) in environmental samples after solid phase extraction on amberlite XAD-2000. J Chin Chem Soc 54:625–634. doi:10.1016/j.jhazmat.2006.08.074

    Google Scholar 

  • EPA USA (1990) Meeting the environmental challenge. EPA, USA, p 46

    Google Scholar 

  • Forstner U (1993) Metal speciation-general concepts and applications. Int J Environ Anal Chem 51:5–23. doi:10.1080/03067319308027608

    Article  Google Scholar 

  • Gao QX, Su FQ, Ren ZH, Zhang ZG, Wang YT (2002) The dust weather of Beijing and its impact. China Environ Sci 22(5):468–471

    Google Scholar 

  • Glasby GP, Szefer P (1998) Marine pollution in Gdansk Bay, Puck Bay and the Vistula Lagoon, Poland: an overview. Sci Total Environ 212:49–57. doi:10.1016/S0048-9697(97)00333-1

    Article  Google Scholar 

  • Guevara-Riba A, Sahuquillo A, Rubio R et al (2004) Assessment of metal mobility in dredged harbor sediments from Barcelona, Spain. Sci Total Environ 321(1–3):241–255. doi:10.1016/j.scitotenv.2003.08.021

    Google Scholar 

  • Hakanson L (1980) An ecology risk index for aquatic pollution control: a sedimentological approach. Water Res 14(8):975–1001

    Article  Google Scholar 

  • Henrion R (1994) N-way principal component analysis: theory, algorithms and applications. Chemom Intell Lab Syst 25:1–23. doi:10.1016/0169-7439(93)E0086-J

    Article  Google Scholar 

  • Hjorth T (2004) Effects of freeze-drying on partitioning patterns of major elements and trace metals in lake sediments. Anal Chim Acta 526:95–102. doi:10.1016/j.aca.2004.08.007

    Article  Google Scholar 

  • Ianni C, Magi E, Rivaro P, Ruggieri N (2000) Trace metals in Adriatic coastal sediments: distribution and speciation pattern. Toxicol Environ Chem 78:73–92. doi:10.1080/02772240009358961

    Article  Google Scholar 

  • Jain CK, Malik DS, Yadav R (2004) Metal fractionation study on bed sediments of River Yamuna, India. Water Res 38:569–578. doi:10.1016/j.watres.2003.10.042

    Article  Google Scholar 

  • Jain CK, Malik DS, Yadav R (2007) Metal Fractionation study on bed sediments of lake Nainital, Uttaranchal, India. Environ Monit Assess 130:129–139. doi:10.1007/s10661-006-9383-6

    Article  Google Scholar 

  • Jain CK, Gurunadha Rao VVS, Prakash BA et al. (2009) Meal fractionation study on bed sediments of Hussainsagar Lake, Hyderbad, India. Environ Monit Assess. doi:10.1007/s10661-009-0984-8

  • Jenne EA (1968) Controls on Mn, Fe, Co, Ni and Zn concentrations in soils and water: the significant role of hydrous Mn and Fe oxides. Adv Chem Ser Am Chem Soc 73:337–388

    Google Scholar 

  • Jordao CP, Hickless G (1989) Chemical associations of Zn, Cd, Pb and Cu in soils and sediments determined by the sequential extraction technique. Environ Technol Lett 10:743–752. doi:10.1080/09593338909384793

    Article  Google Scholar 

  • Korfali SI, Davies BE (2004) Speciation of metals in sediment and water in a river underlain by limestone: Role of carbonate species for purification capacity of rivers. Adv Environ Res 8:599–612. doi:10.1016/S1093-0191(03)00033-9

    Article  Google Scholar 

  • Larner BL, Seen AJ, Townsend AT (2006) Comparative study of optimized BCR sequential extraction scheme and acid leaching of elements in the certified reference material NIST 2711. Anal Chim Acta 556:444–449. doi:10.1016/j.aca.2005.09.058

    Article  Google Scholar 

  • Leardi R, Armanino C, Lanteri S, Alberotanza L (2000) Three-mode principal component analysis of monitoring data from Venice lagoon. J Chemom 14(3):187–195. doi:10.1002/1099-128X(200005/06)14:3

    Article  Google Scholar 

  • Li ZG, Feng XB, He TR, Yan HY (2005) Determination of total mercury in soil and sediment by aqua regia digestion in the water bath coupled with cold vapor atom fluorescence spectrometry. Bull Mineral Petrol Geochem 24(2):140–143

    Google Scholar 

  • Li LF, Zeng XB, Li GX et al (2007) Heavy metal pollution of Wenyu River sediment and its risk assessment. Acta Scientiae Circum Stantiae 27(2):289–297

    Google Scholar 

  • Loska K, Wiechula D (2003) Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 51:723–733. doi:10.1016/S0045-6535(03)00187-5

    Article  Google Scholar 

  • Morgan JJ, Stumm W (1964) The role of multivalent metal oxides in limnological transformations as exemplified by iron and manganese. In: Jaag O (ed) Advances in water pollution research Bol. 1. Proceedings of the Second international conference held in Tokyo. Pergamon Press, Oxford, pp 103–131

  • Muller G (1969) Index of geo-accumulation in sediments of Rhine River. Geol J 2:108–118

    Google Scholar 

  • Murray KS, Cauvet D, Lybeer M, Thomas JC (1999) Particle size and chemical control of heavy metals in bed sediment from the Rouge River, Southeast Michigan. Environ Sci Technol 33(7):987–992. doi:10.1021/es9807946

    Article  Google Scholar 

  • Nilsson O, Sternbeck J (1999) A mechanistic model for calcite growth using surface speciation. Geochim Cosmochim Acta 63(2):217–255. doi:10.1016/S0016-7037(99)00026-5

    Article  Google Scholar 

  • Nowak B (1995) Sequential extraction of metal forms in the soil near a roadway in southern Poland. Analyst 120:737–739. doi:10.1039/an9952000737

    Article  Google Scholar 

  • Nriagu JO (1998) History, production, and uses of thallium. In: Nriagu JO (ed) Thallium in the environment. Wiley, New York, pp 7–8

    Google Scholar 

  • Pardo R, Barrado E, Perez L, Vega M (1990) Determination and speciation of heavy metals in sediments of the Pisuerga river. Water Res 24(3):373–379. doi:10.1016/0043-1354(90)90016-Y

    Article  Google Scholar 

  • Pardo R, Helena BA, Cazurro C, Guerra C, Debán L, Guerra CM, Vega M (2004) Application of two- and three-way principal component analysis to the interpretation of chemical fractionation results obtained by the use of the B.C.R. procedure. Anal Chim Acta 523(1):125–132. doi:10.1016/j.aca.2004.07.015

    Article  Google Scholar 

  • Pardo R, Vega M, Debán L, Cazurro C, Carretero C (2008) Modelling of chemical fractionation patterns of metals in soils by two-way and three-way principal component analysis. Anal Chim Acta 606:26–36. doi:10.1016/j.aca.2007.11.004

    Article  Google Scholar 

  • Qian J, Wang ZJ, Shan XQ, Tu Q, Wen B, Chen B (1996) Evaluation of plant availability of soil trace metals by chemical fractionation and multiple regression analysis. Environ Pollut 91(3):309–315

    Article  Google Scholar 

  • Quevauviller P (2002) Operationally defined extraction procedures for soil and sediment analysis. Part 3: new crms for trace element extractable contents. TrAC Trends Anal Chem 21(11):774–785. doi:10.1016/S0165-9936(02)01105-6

    Article  Google Scholar 

  • Ranu G, Tandon SN, Mathur RP, Singh OV (1993) Speciation of metals in Yamuna river sediments. Sci Total Environ 136:229–242

    Article  Google Scholar 

  • Rauret G, López-Sánchez JF, Sahuquillo A et al (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monitor 1:57–61. doi:10.1039/a807854h

    Article  Google Scholar 

  • Reeder RJ (1996) Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth. Geochim Cosmochim Acta 60:1543–1552. doi:10.1016/0016-7037(96)00034-8

    Article  Google Scholar 

  • Sahuquillo A, Rigol A, Rauret G (2003) Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. Trends Anal Chem 22:152–159. doi:10.1016/S0165-9936(03)00303-0

    Article  Google Scholar 

  • Singh KP, Malik A, Singh VK, Sinha S (2006) Multi-way data analysis of soils irrigated with wastewater–A case study. Chemom Intell Lab Syst 83(1):1–12. doi:10.1016/j.chemolab.2006.01.001

    Article  Google Scholar 

  • Smilde AK (1992) Three-way analyses problems and prospects. Chemometrics and Intelligent Laboratory Systems 15(2–3):143–157. doi:10.1016/0169-7439(92)85005-N

    Article  Google Scholar 

  • Stanimirova I, Zehl K, Massart DL, Heyden Y, Einax JW (2006) Chemometric analysis of soil pollution data using the Tucker N-way method. Anal Bioanal Chem 385(4):771–779. doi:10.1007/s00216-006-0445-y

    Article  Google Scholar 

  • Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39(6):611–627. doi:10.1007/s002540050473

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Pub., Palo Alto, CA

  • Templeton DM, Ariese F, Cornelis R et al (2000) IUPAC guidelines for terms related to chemical speciation and fractionation of elements. Pure Appl Chem 72:1453–1470. doi:10.1351/pac200072081453

    Article  Google Scholar 

  • Terrado M, Barceló D, Tauler R (2006) Identification and distribution of contamination sources in the Ebro river basin by chemometrics modelling coupled to geographical information systems. Talanta 70(4):691–704. doi:10.1016/j.talanta.2006.05.041

    Article  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M et al (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51(7):844. doi:10.1021/ac50043a017

    Article  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1980) Trace metal speciation in the Yamaska and St. Francois Rivers (Quebec). Can J Earth Sci 71:90–105. doi:10.1139/e80-008

    Google Scholar 

  • Ure AM (1996) Single extraction schemes for soil analysis and related applications. Sci Total Environ 178(1–3):3–10. doi:10.1016/0048-9697(95)04791-3

    Google Scholar 

  • Vandeginste BGM, Massart DL, De Jong S et al (1998) Handbook of chemometrics and qualimetrics: Part B. Elsevier, Amsterdam. doi:10.1023/B:EGAH.0000039594.19432.80

    Google Scholar 

  • Wang W, Yue X, Liu HJ, Pan Z, Tang DG, Wang Y, Du RG, Su HM, Qian F (2002) Study on pollution characteristics of aerosols during sand-dust storm weather in Beijing. Acta Scientiae Circumstantiae 22(4):494–498

    Google Scholar 

  • Wang H, Wang CX, Wang ZJ et al (2004) Fractionation of heavy metals in surface sediments of Taihu Lake, East China. Environ Geochem Health 26(2):303–309

    Article  Google Scholar 

  • Wen X, Allen HE (1999) Mobilization of heavy metal from Le An River sediment. Sci Total Environ 227:101–108. doi:10.1016/S0048-9697(99)00002-9

    Article  Google Scholar 

  • Yang ZS (1988) Mineralogical assemblages and chemical characteristics of clays from sediments of the Huanghe, Changjiang, Zhujiang Rivers and their relationship to the climate environment in their sediment source areas. Oceanologia Et Limnologia Sinica 19(4):336–346

    Google Scholar 

  • Yang AL, Zhu YM (1999) The study of nonpoint source pollution of surface water environment. Tech Equip Environ Pollut Control 5:60–66

    Google Scholar 

  • Yang C, Chen Y, Peng P, Li C, Chang X, Xie C (2005) Distribution of natural and anthropogenic thallium in the soils in an industrial pyrite slag disposing area. Sci Total Environ 341:159–172. doi:10.1016/j.scitotenv.2004.09.024

    Article  Google Scholar 

  • Yuan H, Wang Y, Gu S, Lu J, Zhou H, Wan X (2008) Chemical forms and pollution characteristics of heavy metals in Yellow River sediments. Chin J Ecol 27(11):1966–1971

    Google Scholar 

  • Zhang CS, Zhang S, Wang LJ, Wang LZ (1998a) Geochemistry of metals in sediments from Changjiang River and Huanghe River and their comparison. Acta Geographica Sinica 53(4):314–322

    Google Scholar 

  • Zhang TH, Shan XQ, Li FL (1998b) Comparison of two sequential extraction procedures for speciation analysis of metals in soils and plant availability. Commun Soil Sci Plant Anal 29:1023–1034. doi:10.1080/00103629809370004

    Article  Google Scholar 

  • Zhang RJ, Wang MX, Pu YF, Liu Q, Fu JZ, Zhang W (2000) Analysis on the chemical and physical properties of “2000.4.6” super dust storm in Beijing. Clim Environ Res 5(3):259–266

    Google Scholar 

  • Zhou GH, Qin XW, Dong YX (2005) Soil environmental quality standards: principle and method. Geol Bull China 24:721–727

    Google Scholar 

  • Zhuang GS, Guo JH, Yuan H, Zhao CY (2001) The composition, sources and size distribution of Chinese sandstorm in 2000 and its global environment impacts. Chin Sci Bull 46(3):191–196

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Gong Huili and Prof. Zhao Wenji for their input and suggestions regarding this study. The authors also thank Dr. Jiang Yongbin and Chen Qilong (MSc), Fan Yang (MSc), Wang Lijun (MSc), Xue Yanshan (MSc) for assistance with field sampling. This study was jointly supported by the Beijing Education Committee, Talent Programs of Beijing (2005IA05016012) and the New Century Multi-hundred Talent Programs of Beijing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbing Ji.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 165 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, H., Ji, H. Application of chemometric methods to analyze the distribution and chemical fraction patterns of metals in sediment from a metropolitan river. Environ Earth Sci 61, 641–657 (2010). https://doi.org/10.1007/s12665-009-0379-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-009-0379-8

Keywords

Navigation