Skip to main content

Fractionation of heavy metals in bottom sediments using Tessier procedure

Abstract

The study presents the results of Cu, Pb, Zn, Mn and Fe determination in the samples of bottom sediments collected from the Oder and Warta rivers. The sequential extraction of metals in the samples of bottom sediments was performed after introducing the modification of the extraction scheme suggested by Tessier et al. (Anal Chem 51(7):844–851, 1979). The extraction times of particular stages were optimised. The fifth stage was altered by introducing the new methods of performing extraction. The samples of bottom sediments submitted the following granulometric analyses: dry, wet and wet with (HMP) dispersing reagent. Seven granulometric fractions with the following grain sizes were isolated: >2.0, 2.0–1.0, 1.0–0.5, 0.5–0.25, 0.25–0.1, 0.1–0.063 and <0.063 mm. The sequential extraction of particular granulometric fractions was performed. The concentration of metals variability was analysed depending on the method of sample preparation for the chemical analysis, granulometric fraction of sediments subjected to the analysis, extraction conditions and the site of samples collection. The lack of linearity between the metal concentration and the size of granulometric fraction was observed. The highest concentrations of metals were observed in fractions >2.0, 2.0–1.0 and 0.1–0.063 and <0.063 mm while the lowest concentrations occurred in fractions 1.0–0.5, 0.5–0.25, and 0.25–0.1 mm. The atomic absorption spectrometry with flame atomisation (F-AAS) was used for the determination of the investigated elements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Adamiec E, Helios-Rybicka E (2002) Distribution of pollutants in the Odra River system part V. Assessment of total and mobile heavy metals content in the suspended matter and sediments of the Odra River system and recommendation for river chemical monitoring. Pol J Environ Stud 11(6):669 67

    Google Scholar 

  • Astel A, Głosińska G, Sobczyński T, Boszke L, Simeonov V, Siepak J (2006) Chemometrics in the assessment of the sustainable development rule implementation. Cent Eur J Chem 4(3):543–564

    Article  Google Scholar 

  • Bezak-Mazur E, Rabajczyk A (2004) Speciation analysis of aluminium in solid environmental samples (Analiza specjacyjna glinu w stałych próbkach środowiskowych). Mikrozanieczyszczenia w środowisku człowieka 48:55–63

    Google Scholar 

  • Förnstner U (2004) Traceability of sediment analysis. Trends Anal Chem 23(3):217–236

    Article  Google Scholar 

  • Förnstner U, Wittman GTW (1979) Heavy metal pollution in the aquatic environment. Springer-Verlag, Berlin

    Google Scholar 

  • Förstner U, Salomons W (1980) Trace metal analysis on polluted sediment, Part I: assessment of sources and intensities. Environ Technol Lett 1:494–505

    Article  Google Scholar 

  • Frankowski M, Sobczyński T, Zioła A (2005) The effect of grain size structure on the content of heavy metals in alluvial sediments of the Odra River. Pol J Environ Stud 14(5):81–86

    Google Scholar 

  • Frankowski M, Siepak M, Zioła A, Novotny K, Vaculovič T, Siepak J (2008) Vertical distribution of heavy metals in grain size fractions in sedimentary rocks: Mosina-Krajkowo water well field, Poland. Environ Monit Assess. doi:10.1007/s10661-008-0476-2

  • Frankowski M, Zioła A, Siepak M (2008b) Grain size analysis of bottom sediment and distribution of bioavailability heavy metals in particulate grain size in the Mała Wełna river system. Pol J Environ Stud 17(3):343–350

    Google Scholar 

  • Frentiu T, Ponta M, Levei E, Gheorghiu E, Kasler I, Cordos EA (2008) Validation of the Tessier scheme for speciation of metals in soil using the Bland and Altman test. Chem Pap 62(1):114–122

    Article  Google Scholar 

  • Głosińska G, Sobczyński T, Boszke L, Bierła K, Siepak J (2005) Fractionation of some heavy metals in bottom sediments from the middle Odra River (Germany/Poland). Pol J Environ Stud 14(3):305–317

    Google Scholar 

  • Helios-Rybicka E (1992) Heavy metal partitioning in polluted river and sea sediments: clay mineral effects. Miner Petrogr Acta 35-A:297–305

    Google Scholar 

  • Helios-Rybicka E, Adamiec E, Aleksander-Kwaterczak U (2005) Distribution of trace metals in the Odra River system: water-suspend matter-sediments. Limnologica 35:185–198

    Google Scholar 

  • ICPOaP—International Commission for the Protection of the Odra River against Pollution (2005) Report Water Framework Directive (Raport Dla Komisji Europejskiej)

  • Korfali SI, Davies BE (2003) A comparison of heavy metals in sediments and water in the river Nahr-Ibrahim, Lebanon: 1996 and 1999. Environ Geochem Health 25:41–50

    Article  Google Scholar 

  • Kubová J, Matúš P, Bujdoš M, Medved J (2005) Influence of acid mining activity on release of aluminium to environment. Anal Chim Acta 547:119–125

    Article  Google Scholar 

  • Lindsay PJ, Shilts WW (1995) A standard laboratory procedure for separating clay-sized detritus from unconsolidated glacial sediments and their derivatives. British Columbia Ministry of Energy, Mines and Petroleum Resources Paper (2), pp 165–166

  • Lis J, Pasieczna A (1995) Geochemical atlas of Poland (Atlas Geochemiczny Polski). Polish Geological Institute, Warsaw

    Google Scholar 

  • Lis J, Pasieczna A (2005) Geochemical atlas of Poznań and its environs. Soils, sediments, surface water (Atlas Geochemiczny Poznania i Okolic. Gelby, Osady Wodne, Wody Powierzchniowe). Polish Geological Institute, Warsaw

    Google Scholar 

  • Meyer AK (2002) Load of the Odra: results of International Odra Project (Zanieczyszczenie rzeki Odry: wyniki Międzynarodowego Projektu Odra). University of Hamburg, Hamburg

    Google Scholar 

  • Müller G (1986) Schadstoffe in sedimenten – sedimente als schadstoffe, Mitt Österr Geol Ges. Umweltgeologie – Band 79, Wien, pp 107–126

  • Olivares-Rieumont S, De la Rosa D, Lima L, Graham DW, D′ Alessandro K, Borroto J, Martínez F, Sánchez J (2005) Assessment of heavy metal levels in Almendares River sediments—Havana City, Cuba. Water Res 39:3945–3953

    Article  Google Scholar 

  • Ploffe A (2001) Leaching of loosely bound elements during wet grain size separation with sodium hexametaphosphate: implications for selective extraction analysis. Geochem Explor Environ Anal 1(2):157–162

    Google Scholar 

  • Polish Standards, International Standards Organization PN ISO 11466 (2002) Soil quality. Extraction of trace elements soluble in aqua regia. Polish Committee for Standardization, Warsaw

  • Rauret G, López–Sánches JF, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller Ph (1999) Improvement of the BCR three–step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monitor 1:57–61

    Article  Google Scholar 

  • Romaguera F, Boluda R, Fornes F, Abad M (2008) Comparison of three extraction procedures for trace element partitioning in three contaminated Mediterranean soils. Environ Geochem Health 30(2):171–175

    Article  Google Scholar 

  • Singh AK, Hasnain SI, Benerjee DK (1999) Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River—a tributary of the lower Ganga, India. Environ Geol 39(1):90–98

    Article  Google Scholar 

  • Sutherland RA (2002) Comparison between non-residual Al, Co, Cu, Fe, Mn, Ni, Pb and Zn released by a three-step sequential extraction procedure and a dilute hydrochloric acid leach for soil and road deposited sediment. Appl Geochem 17:353–365

    Article  Google Scholar 

  • Sutherland RA (2003) Lead in grain size fractions of road-deposited sediment. Environ Pollut 121(2):229–237

    Article  Google Scholar 

  • Sutherland RA, Tack FMG (2007a) Sequential extraction of lead from grain size fractionated river sediments using the optimized BCR procedure. Water Air Soil Pollut 184:269–284

    Article  Google Scholar 

  • Sutherland RA, Tack FMG (2007b) Sequential extraction of lead from grain size fractionated river sediments using the optimized BCR procedure. Water Air Soil Pollut 184(1–4):269–284

    Article  Google Scholar 

  • Sutherland RA, Tack FMG (2008) Extraction of labile metals from solid media by dilute hydrochloric acid. Environ Monit Assess 138:119–130

    Article  Google Scholar 

  • Sutherland RA, Tack FMG, Ziegler AD, Bussen JO (2004) Metal extraction from road-deposited sediments using nine partial decomposition procedures. Appl Geochem 19:947–995

    Article  Google Scholar 

  • Tessier A, Campbell PG, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51(7):844–851

    Article  Google Scholar 

  • Tokaliogulu S, Kartal S, Elci L (2000) Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure. Anal Chim Acta 413:33–40

    Article  Google Scholar 

  • Zioła-Frankowska A, Frankowski M, Szczuciński W, Siepak J (2009) Analysis of labile aluminium form in grain size fractions of tsunami deposits in Thailand. Pol J Environ Stud 18(1):77–85

    Google Scholar 

Download references

Acknowledgments

The research was financed from 2007 to 2009 research fund as project nos. N 525 017 32/1871 and N 305 101235 of the Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Frankowski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frankowski, M., Zioła-Frankowska, A., Kowalski, A. et al. Fractionation of heavy metals in bottom sediments using Tessier procedure. Environ Earth Sci 60, 1165–1178 (2010). https://doi.org/10.1007/s12665-009-0258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-009-0258-3

Keywords

  • Bottom sediment
  • Oder river
  • Warta river
  • Grain size fractions
  • Tessier procedure