Skip to main content
Log in

Organic geochemical record of increased productivity in Lake Naukuchiyatal, Kumaun Himalayas, India

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Organic geochemical proxies have been studied in a 45-cm-long core retrieved from Lake Naukuchiyatal in Kumaun Himalayas, India. Increase in TOC, N, hydrocarbons and pigments concentration from bottom to surface sediments of the core indicates increase in the lake productivity. Stable isotopes (δ13C and δ15N), biomarkers (TAR, CPI and n-ΣC15,17,19) and C/N atomic (between 9 and 12) suggest dominance of algal derived organic matter in these sediments. Decrease in organic δ13C values (between −27 and −31‰) in surface sediments indicate influence of sewage and land runoff in shifting organic δ13C values, whereas low (between −0.23 and 2.2‰) δ15N values together with high pigment concentrations (zeaxanthin and echinenone) represent dominance of cyanobacteria in the lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ali MB, Tripathi RD, Rai UN, Pal A, Singh SP (1999) Physico-chemical characteristic and pollution level of Lake Nainital (UP, India): role of macrophytes and phytoplankton in biomonitoring and phytoremediation of toxic metal ions. Chemosphere 39:2171–2182. doi:10.1016/S0045-6535(99)00096-X

    Article  Google Scholar 

  • Allan J, Douglas AG (1977) Variations in the content and distribution of n-alkanes in a series of Carboniferous vitrinites and sporinites of bituminous rank. Geochim Cosmochim Acta 41:1223–1230. doi:10.1016/0016-7037(77)90068-0

    Article  Google Scholar 

  • Bernasconi SM, Barbieri A, Simona M (1997) Carbon and nitrogen isotope variations in sedimenting organic matter in Lake Lugano. Limnol Oceanogr 42:1755–1765

    Google Scholar 

  • Bianchi TS, Westman P, Rolff C, Engelhaupt E, Andren T, Elmgren R (2000) Cyanobacterial blooms in Baltic Sea: natural or human induced? Limnol Oceanogr 45:716–726

    Google Scholar 

  • Bianchi TS, Rolff C, Widbom B, Elmgren R (2002) Phytoplankton pigments in Baltic Sea seston and sediments: seasonal variability, fluxes and transformations. Estuar Coast Shelf Sci 55:369–383. doi:10.1006/ecss.2001.0911

    Article  Google Scholar 

  • Bourbonniere RA, Meyers PA (1996) Sedimentary geolipid records of historical changes in the watersheds and productivities of Lake Ontario and Erie. Limnol Oceanogr 41:352–359

    Google Scholar 

  • Brenner M, Whitmore TJ, Curtis JH, Hodell DA, Schelske CL (1999) Stable isotope (δ13C and δ15N) signature of sedimented organic matter as indicator of historic lake trophic state. J Paleolimnol 22:205–221. doi:10.1023/A:1008078222806

    Article  Google Scholar 

  • Chakrapani GJ (2002) Water and sediment geochemistry of major Kumaun Himalayan lakes, India. Environ Geol 43:99–107. doi:10.1007/s00254-002-0613-0

    Article  Google Scholar 

  • Choudhary P, Routh J, Charapani GJ (2009a) A paleoenvironmental record of human induced changes in sedimentary organic matter from Lake Sattal in Kumaun Himalayas. India Sci Total Environ 407:2783–2795. doi:10.1016/j.scitotenv.2008.12.020

    Article  Google Scholar 

  • Choudhary P, Routh J, Chakrapani GJ, Kumar B (2009b) Organic matter and stable isotopic record of paleoenvironmental changes in sediments from Nainital Lake in Kumaun Himalayas, India. J Paleolimnol (in press). doi:10.1007/s10933-009-9306-y

  • Cranwell PA, Eglinton G, Robinson N (1987) Lipids of aquatic organisms as potential contribution to lacustrine sediments—II. Org Geochem 11:513–527. doi:10.1016/0146-6380(87)90007-6

    Article  Google Scholar 

  • Das BK (2005) Environmental pollution impact on water and sediments of Kumaun lakes, lesser Himalaya, India: a comparative study. Environ Geol 49:230–239. doi:10.1007/s00254-005-0077-0

    Article  Google Scholar 

  • Ficken KJ, Li B, Swain DL, Eglinton G (2000) An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem 31:745–749. doi:10.1016/S0146-6380(00)00081-4

    Article  Google Scholar 

  • Gu B, Schelske CL (1996) Temporal and spatial variations in phytoplankton carbon isotopes in a polymictic subtropical lake. J Plankton Res 18:2081–2092. doi:10.1093/plankt/18.11.2081

    Article  Google Scholar 

  • Hodell DA, Schelske CL (1998) Production, sedimentation and isotopic composition of organic matter in Lake Ontario. Limnol Oceanogr 43:200–214

    Article  Google Scholar 

  • Hoefs J (1997) Stable isotope geochemistry. Springer, Berlin

    Google Scholar 

  • Ishiwatari R, Yamamoto S, Uemura H (2005) Lipid and lignin/cutin compounds in Lake Baikal sediments over the last 37 kyr: implications for glacial–interglacial palaeoenvironmental change. Org Geochem 36:327–347. doi:10.1016/j.orggeochem.2004.10.009

    Article  Google Scholar 

  • Kendall C, Silva SR, Kelly VJ (2001) Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrol Proc 15:1301–1346. doi:10.1002/hyp.216

    Article  Google Scholar 

  • Khanna LS, Jalal DS (1985) Physico-limnological analysis of Naukuchiatal lake, Kumaun Himalaya. Mt Res Develop 4(II):51–54

    Google Scholar 

  • Kumar B, Rai SP, Nachiappan RmP, Kumar SU, Singh S, Diwedi VK (2007) Sedimentation rate in North Indian lakes estimated using 137Cs and 210Pb dating techniques. Curr Sci 92:10–25

    Google Scholar 

  • Law EA, Bidigare RR, Popp BN (1997) Effect of growth rate and CO2 concentration on carbon isotope fractionation by the marine diatom Phaeodactylum tricornutum. Limnol Oceanogr 42:1552–1560

    Article  Google Scholar 

  • Law EA, Thompson PA, Popp BN, Bidigare RR (1998) Source of inorganic carbon for marine microalgal synthesis: a reassessment of δ13C data from batch culture studies of Thalassiosira pseudonana and Emiliana huxleyi. Limnol Oceanogr 43:136–142

    Article  Google Scholar 

  • Leavitt PR (1993) A review of factors that regulate carotenoid and chlorophyll deposition and fossil abundance. J Paleolimnol 9:109–127. doi:10.1007/BF00677513

    Article  Google Scholar 

  • Leavitt PR, Hodgson DA (2001) Sedimentary pigments. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments: terrestrial, algal and siliceous indicators, vol 3. Kluwer, Dodrecht, pp 255–262

    Google Scholar 

  • Mead R, Xu Y, Chong J, Jaffe R (2005) Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes. Org Geochem 36:363–370. doi:10.1016/j.orggeochem.2004.10.003

    Article  Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302. doi:10.1016/0009-2541(94)90059-0

    Article  Google Scholar 

  • Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and palaeoclimatic processes. Org Geochem 27:213–250. doi:10.1016/S0146-6380(97)00049-1

    Article  Google Scholar 

  • Meyers PA (2003) Applications of organic geochemistry of paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289. doi:10.1016/S0146-6380(02)00168-7

    Article  Google Scholar 

  • Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900. doi:10.1016/0146-6380(93)90100-P

    Article  Google Scholar 

  • Meyers PA, Lallier-Verges E (1999) Lacustrine sedimentary organic matter records of late Quaternary paleoclimates. J Paleolimnol 21:345–372. doi:10.1023/A:1008073732192

    Article  Google Scholar 

  • Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, physical and geochemical methods, vol 2. Kluwer, Dordrecht, pp 239–269

    Chapter  Google Scholar 

  • Paerl WK (1988) Nuisance phytoplankton blooms in coastal, estuarine and inland waters. Limnol Oceanogr 33:823–847

    Article  Google Scholar 

  • Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide. Volume 2: Biomarkers and isotopes in petroleum exploration and earth history. Cambridge University Press, Cambridge

    Google Scholar 

  • Rieley G, Collier RJ, Jones DM, Eglinton G (1991) The biogeochemistry of Ellesmere Lake, UK I: source correlation of leaf wax inputs to the sedimentary record. Org Geochem 17:901–912. doi:10.1016/0146-6380(91)90031-E

    Article  Google Scholar 

  • Rosenmeier MF, Brenner M, Kenney WF, Whitmore TJ, Taylor CM (2004) Recent eutrophication in the southern basin of Lake Petén Itzá, Guatemala: human impact on a large tropical lake. Hydrobiology 511:161–172. doi:10.1023/B:HYDR.0000014038.64403.4d

    Article  Google Scholar 

  • Routh J, Meyers PA, Gustafsson Ö, Baskaran M, Hallberg R, Scholdström A (2004) Sedimentary geochemical record of human induced environmental changes in the Lake Brunnsviken watershed, Sweden. Limnol Oceanogr 49:1560–1569

    Article  Google Scholar 

  • Routh J, Meyers PA, Hjorth T, Baskaran M, Hallberg R (2007) Sedimentary geochemical record of recent environmental changes around Lake Middle Marviken, Sweden. J Paleolimnol 37:529–545. doi:10.1007/s10933-006-9032-7

    Article  Google Scholar 

  • Routh J, Choudhary P, Meyers PA, Kumar B. (2008) An organic geochemical record of eutrophic changes in Lake Norrviken, Sweden. J Paleolimnol. doi:10.1007/s10933-008-9279-2

  • Sanger JE, Crowl GH (1979) Fossil pigments as a guide to the paleolimnology of Browns Lake, Ohio. Quat Res 11:342–352. doi:10.1016/0033-5894(79)90079-6

    Article  Google Scholar 

  • Schelske CL, Hodell DA (1991) Recent changes in productivity and climate of Lake Ontario detected by isotopic analysis of sediments. Limnol Oceanogr 36:961–975

    Article  Google Scholar 

  • Singh SP, Gopal B (eds) (1999) Nainital and Himalayan Lakes. NIE and WWF, New Delhi, p 62

  • Talbot MR (2001) Nitrogen isotopes in Paleolimnology. In: Last WM, Smol JP (eds) Tracking environmental changes using lake sediments. Physical and geochemical methods, vol 2. Kluwer, Dordrecht, pp 401–439

    Chapter  Google Scholar 

  • Talbot MR, Laerdal T (2000) The late Pleistocene–Holocene palaeolimnology of Lake Victoria East Africa based upon elemental and isotopic analyses of sedimentary organic matter. J Paleolimnol 23:141–164. doi:10.1023/A:1008029400463

    Article  Google Scholar 

  • Tenzer GE, Meyers PA, Ribbins JA, Eadie BJ, Morehead NR, Lansing MB (1999) Sedimentary organic matter record of recent environmental changes in the St. Marys River ecosystem Michigan–Ontario border. Org Geochem 30:133–146. doi:10.1016/S0146-6380(98)00209-5

    Article  Google Scholar 

  • Teranes JL, Bernasconi SM (2000) The record of nitrate utilization and productivity limitation provided by δ15N values in lake organic matter—a study of sediment trap and core sediments from Baldeggersee Switzerland. Limnol Oceanogr 45:801–813

    Article  Google Scholar 

  • Urban NR, Ernst K, Bernasconi S (1999) Addition of sulfur to organic matter during early diagenesis of lake sediments. Geochim Cosmochim Acta 63:837–853. doi:10.1016/S0016-7037(98)00306-8

    Article  Google Scholar 

  • Valdiya KS (1988) Geology and natural environment of Nainital Hills, Kumaun Himalaya. Gyanodaya Prakashan, Nainital, India

    Google Scholar 

  • Westman P, Borgendahl J, Bianchi TS, Chen N (2003) Probable causes for cyanobacterial expansions in the Baltic Sea: role of anoxia and phosphorus retention. Estuaries 26:680–689. doi:10.1007/BF02711979

    Article  Google Scholar 

Download references

Acknowledgments

P. Parthasarathy and R. Saini are acknowledged for their help in sampling the lake. Supriyo Das helped with pigment analysis. Klara Hajnal and Heike Seigmund are acknowledged for their help in the laboratory. We thank the Swedish Research Link-Asia program for funding the study and P.C. was supported on Council of Scientific and Industrial Research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preetam Choudhary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhary, P., Routh, J. & Chakrapani, G.J. Organic geochemical record of increased productivity in Lake Naukuchiyatal, Kumaun Himalayas, India. Environ Earth Sci 60, 837–843 (2010). https://doi.org/10.1007/s12665-009-0221-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-009-0221-3

Keywords

Navigation