Environmental Earth Sciences

, 59:1275 | Cite as

Monitoring study of the mine pond reclamation of Mina Concepción, Iberian Pyrite Belt (Spain)

  • Tomás Martín-CrespoEmail author
  • Cristina De Ignacio-San José
  • David Gómez-Ortiz
  • Silvia Martín-Velázquez
  • Javier Lillo-Ramos
Original Article


Mining of massive (Cu, Pb and Zn) sulphide bodies in the Iberian Pyrite Belt (SW Spain) has generated a great number of abandoned waste deposits such as mine ponds. These represent large accumulations of reactive minerals and subsequently, emission sources of trace elements and formation of acid drainage. Even if they have been restored, monitoring studies are required to evaluate the corrective effects and how they may change over time. This work presents the results of a monitoring study carried out at Mine Concepción mine pond, based on mineralogical (XRD), geochemical (INAA, X-ray fluorescence, ICP-MS) and geophysical (electrical resistivity tomography) techniques. In it, a series of relevant parameters have been well delimited, such as the infilling thickness and its variation and, the position, geometry and absence of water leakages through the base of the mine pond. Additionally, the existence of an internal, remnant flow of acid waters that tends to come out through the pond dyke has been identified. Chemistry of these waters indicates that oxidation processes affecting the Mina Concepción mine tailings are generating acid drainage waters which could potentially release substantial amounts of trace elements to the river Odiel. Thus, giving that not complete sealing is accomplished by the restoration capping and rainfall water infiltrates into the pond materials, at least the sealing of the dyke through which leakages occur should be revised.


Mine reclamation Monitoring Acid mine drainage Electrical resistivity tomography Iberian Pyrite Belt Spain 



This work has been accomplished on the frame of project URJC-RNT-063-1 funded by Comunidad de Madrid and Universidad Rey Juan Carlos. We would like to thank J.M. Esbrí for performance of analyses carried out at the Escuela Universitaria Politécnica de Almadén.


  1. Aguilar J, Dorronsoro C, Fernández E, Fernández J, García I, Martín F, Simon M (2004) Soil pollution by a pyrite mine spill in Spain: evolution in time. Environ Pollut 132:395–401. doi: 10.1016/j.envpol.2004.05.028 CrossRefGoogle Scholar
  2. Aguilar J, Dorronsoro C, Fernández E, Fernández J, García I, Martín F, Sierra M, Simon M (2006) Arsenic contamination in soils affected by a pyrite-mine spill (Aznalcóllar, SW Spain). Water Air Soil Pollut 180:271–281. doi: 10.1007/s11270-006-9269-9 CrossRefGoogle Scholar
  3. Consejería de Medio Ambiente (1997) Medio Ambiente en Andalucía: Informe 1996. Junta de Andalucía, Sevilla, p 458Google Scholar
  4. Doménech C, de Pablo J, Ayora C (2002) Oxidative dissolution of pyritic sludge from the Aznalcóllar mine (SW Spain). Chem Geol 190:339–353. doi: 10.1016/S0009-2541(02)00124-9 CrossRefGoogle Scholar
  5. EPA (2004) Guidelines for water reuse.
  6. Faz Cano A, Matínez-Pagán P, Aracil Ávila E, Maruri Brouard U (2006) Aplicación de la tomografía eléctrica al estudio de los depósitos de estériles mineros “El Lirio” y “Brunita” (Murcia). In: Rodríguez R, García Cortés A (eds) Los residuos minero-metalúrgicos en el medio ambiente. IGME, Madrid, pp 89–110Google Scholar
  7. Gómez Ortiz D, Martín Crespo T, Martín Velázquez S, Lillo J, de Ignacio C (2006) Caracterización geoambiental de balsas de lodos mineros mediante tomografía eléctrica. Geogaceta 42:47–50Google Scholar
  8. Gómez-Ortiz D, Martín-Velázquez S, Lillo-Ramos J, De Ignacio-San José C, Martín-Crespo T (2007) Estudio de la estructura de la balsa minera abandonada de Mina Concepción (Huelva) mediante el uso combinado de tomografía eléctrica y georadar. In: Proceedings of the 6a Asamblea Hispano Portuguesa de Geodesia y Geofisica, Tomar, pp 213–214Google Scholar
  9. IGME (Instituto Geológico y Minero de España) (1986) Inventario nacional de balsas y escombreras, Madrid, pp 162Google Scholar
  10. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44:131–152. doi: 10.1111/j.1365-2478.1996.tb00142.x CrossRefGoogle Scholar
  11. López M, González I, Romero A (2008) Trace elements contamination of agricultural soils affected by sulphide exploitation (Iberian Pyrite Belt, SW Spain). Environ Geol 54:805–818. doi: 10.1007/s00254-007-0864-x CrossRefGoogle Scholar
  12. Martín-Crespo T, Gómez-Ortiz D, Martín-Velázquez S, Martínez-Pagán P, Aracil E, Faz A, Lillo J, de Ignacio C, Sánchez MJ, Montoya I (2007) Caracterización de lodos mineros mediante y tomografía eléctrica y georadar: aplicación a balsas y ramblas de la zona de La Unión (Cartagena). In: Proceedings of the 6a Asamblea Hispano Portuguesa de Geodesia y Geofisica, Tomar, pp 309–310Google Scholar
  13. Martínez Pagán P (2006) Aplicación de diferentes técnicas no destructivas de prospección geofísica a problemas relacionados con contaminación ambiental producida por diferentes actividades antrópicas en la Región de Murcia. Tesis Doctoral, Universidad Politécnica de Cartagena, p 476Google Scholar
  14. Martínez-Pagán P, Faz-Cano A, Aracil E, Arocena JM (2009) Electrical resistivity tomography revealed the spatial chemical properties of mine tailings ponds in the Sierra Minera (SE Spain). J Environ Eng Geophys (in press)Google Scholar
  15. Pérez-López R, Cama J, Nieto JM, Ayora C (2007) The iron-coating role on the oxidation kinetics of a pyritic sludge doped with fly ash. Geochim Cosmochim Acta 71:1921–1934Google Scholar
  16. Reynolds JM (1997) An introduction to applied and environmental geophysics. Wiley, Chichester, p 796Google Scholar
  17. Sánchez-España J, López Pamo E, Santofimia E, Reyes Andrés J, Martín Rubí JA (2006) The impact of acid mine drainage on the water quality of the Odiel river (Huelva, Spain): evolution of precipitate mineralogy and aqueous geochemistry along the Concepción-Tintillo segment. Water Air Soil Pollut 173:121–149. doi: 10.1007/s11270-005-9033-6 CrossRefGoogle Scholar
  18. Sánchez-España J, López Pamo E, Santofimia E, Díez Ercilla M (2008) The acidic mine pit lakes of the Iberian Pyrite Belt: an approach to their physical limnology and hydrogeochemistry. Appl Geochem 23:1260–1287. doi: 10.1016/j.apgeochem.2007.12.036 CrossRefGoogle Scholar
  19. Telford WM, Geldart LP, Sheriff RE, Keys DA (1990) Applied geophysics. Cambridge University Press, Cambridge, p 770Google Scholar
  20. Tornos F (2006) Environment of formation and styles of volcanogenic massive sulfides: the Iberian Pyrite Belt. Ore Geol Rev 28:259–307. doi: 10.1016/j.oregeorev.2004.12.005 CrossRefGoogle Scholar
  21. Vázquez F (1976) Metalogenia de la Mina Concepción (Almonaster la Real, Huelva, España). Su aplicación a la prospección de sulfuros masivos en el SO. de la Península Ibérica. Comunicaçoes dos Serviços Geológicos de Portugal 40:107–119Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Tomás Martín-Crespo
    • 1
    Email author
  • Cristina De Ignacio-San José
    • 1
  • David Gómez-Ortiz
    • 1
  • Silvia Martín-Velázquez
    • 1
  • Javier Lillo-Ramos
    • 1
  1. 1.Department of Biology and Geology, ESCETUniversidad Rey Juan CarlosMóstolesSpain

Personalised recommendations