Advertisement

Environmental Earth Sciences

, 59:1171 | Cite as

Porosity and mineralogy evolution during the decay process involved in the Chellah monument stones

  • Abderrahim SamaoualiEmail author
  • Larbi Laânab
  • Mohamed Boukalouch
  • Yves GeraudEmail author
Original Article

Abstract

The objective of this work is to study the decay process involved in the historical Roman Chellah located in the Rabat city (Morocco). This monument is made up of porous calcarenite stone. Several samples, taken from altered and unaltered blocks, were analyzed by the water saturation, the mercury intrusion porosimetry techniques and using the scanning electron microscopy coupled to energy dispersive X-ray spectrometer (SEM–EDX). To perform a reliable chemical analysis, some samples were also analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The mercury porosimetry results show a bimodal porous network for this porous material, the deterioration process of these stones involved an increase in porous volume of about 2%. The lowest porosity observed in the unaltered block is connected to the presence of sparitic cement which causes a partial inter-granular porosity clogging. The highest porosity of the deteriorated block without crust is due to the increase in inter-granular space. SEM photographs of the unaltered sample show the presence of the porous primary grains, of ovoid forms and millimeter-length sizes, and of the secondary grains, of rhombohedric forms and micro size. Porosity is essentially located between the primary grains and can be completely clogged by secondary precipitations. Various forms of deterioration are observed on the altered samples such as the dissolution of the secondary grains edges, wells of dissolution and also the presence of argillaceous residues on the surface. This last was also detected by the ICP-AES and EDX analysis which show an increase of the silicon and aluminum contents toward the surface.

Keywords

Calcarenite rocks decay Moroccan historic building Porosity measurements Dissolution Clay precipitation 

Notes

Acknowledgments

This work was supported by the French-Moroccan cooperation within the project named (PAIVolubilis) No. MA/07/168. The authors would like to thank H. Ouaddari from CNRST for his technical assistance to perform ICP-AES analysis.

References

  1. AFPC-AFREM (1997) Détermination de la masse volumique apparente et de la porosité accessible à l’eau. Méthodes recommandées pour la mesure des grandeurs associées à la durabilité (Determination of apparent density and water porosity. Methods recommended for the sustainability measurements). Compte –rendu des Journées techniques. 11–12 Décembre Toulouse, France, pp 121–124Google Scholar
  2. Akil M (1990) Les dépôts quaternaires littoraux entre Casablanca et cap Beddouza: Études Géomorphologiques et Sedimentologiques (Littoral quaternary deposits between casablanca and beddouza: geomorphological and sedimentological studies) Thèse de Doctorat Es- Science, Université Mohamed V Rabat, Maroc, p 419Google Scholar
  3. Alves C, Sequeira Braga MA, Hammecker C (1996) Water transfer and decay of granitic stones in monuments. CR Acad Sci Paris t.323, series II a, pp 397Google Scholar
  4. Azeroual M, Bouamar B, Bounakhla M, Doukkali A, ELwartiti M (2005) Action de la pollution atmosphérique sur les monuments historiques: caractérisation et estimation de l’état de dégradation des remparts de la médina de Salé (Action of the atmospheric polution on the historical buildings : characterization and estimate of the medina ramparts degradation). 3ème Journées des géosciences de l’Environnement. El Jadida 8, 9 et 10 Juin, MarocGoogle Scholar
  5. Azouaoui H, El Hatimi N, El Yamine N (2000) Plio-Quaternary formations of the Casablanca area (Morocco): sedimentological and geotechnical aspects. Bull Eng Geol Environ 59:59–74CrossRefGoogle Scholar
  6. Beck K (2006) Étude des propriétés hydriques et des mécanismes d’altération de pierres calcaires à forte porosité (Studies of hydrous properties and the mechanisms of porous limestones deterioration). Thèse de Doctorat, l’Université d’Orléans, Paris, FranceGoogle Scholar
  7. Benavente D, Garcia del Cura MA, Garcia-Guinea J, Sanchez-Moral S, Ordonez S (2004) Role of pore structure in salt crystallisation in unsaturated porous stone. J Cryst Growth 260:532–544CrossRefGoogle Scholar
  8. Benboughaba R (2001) Etude Sédimentologique et Géophysique des formations littorales plio-quaternaires de l’axe Rabat-Kénitra (Maroc) (Sedimentological and geophysical studies of the plio-quaternary littoral formations of the Rabat-Kénitra axis). Thèse de doctorat, Université Mohammed V Agdal, Rabat, Maroc, p 233Google Scholar
  9. Camuffo D (1995) Physical weathering of stones. Sci Total Environ 167:1–14CrossRefGoogle Scholar
  10. Carrio-Schaffhauser E (1987) Évolution des propriétés pétro physiques d’un calcaire: le rôle de la dissolution cristallisation dans une déformation cassante (Evolution of the petrophysical properties of a limestone : the role of dissolution crystallization in a breakable deformation). Thèse de l’Université de Aix-Marseille I, pp 291Google Scholar
  11. Fripiat J, Chzaussidon J, Jelli A (1971) Chimie physique des phénomènes de Surface (Physical chemistry of surface phenomena). Edition Masson, Paris, p 387Google Scholar
  12. Genkinger S, Putnis A (2006) Crystallisation of sodium sulfate: supersaturation and metastable phases. Environ Geol 52:329–337. doi: 10.1007/s00254-006-0565-x CrossRefGoogle Scholar
  13. Goudie AS, Viles H (1997) Salt weathering hazards. Wiley, Chichester, p 241Google Scholar
  14. Guéguen Y, Palciauskas V (1992) Introduction à la physique des roches (Introduction to rock physics). Hermann (ed) pp 299Google Scholar
  15. Hammecker C (1995) The Importance of the petrophysical properties and external factors in the stone decay on monuments. Pure Appl Geophys 145(2):337–361CrossRefGoogle Scholar
  16. Lenormand R, Zarcone C, Sarr A (1983) Mechanisms of displacement of one fluid by another in a network of capillary ducts. J Fluid Mech 135:337–353CrossRefGoogle Scholar
  17. Prick A (1995) Dilatometrical behaviour of porous calcareous rock samples subjected to freeze-thaw cycles. Catena 25:7–20CrossRefGoogle Scholar
  18. Rijniers LA, Huinink HP, Pel L, Kopinga K (2005) Salt crystallization as damage mechanism in porous building materials—a nuclear magnetic resonance study. Magn Reson Imaging 23:273–276CrossRefGoogle Scholar
  19. Samaouali A, Laânab L, Geraud Y, Nounah H, Boukalouch M (2005) Chemical alteration of stones of monuments Chellah Roman. Paper presented at the first international meeting on Mediterranean Architectural Culture Heritage, in Collaboration with CICRP (Marseille, France). 26–28 September, Meknes, MoroccoGoogle Scholar
  20. Tiano P (1994) Biodeterioration of stone monuments. A critical review. In: Garg KL, Garg N, Mukerji KG (eds) Bio deterioration of cultural heritage, vol I. Naya Prokash, Calcutta, pp 301–321Google Scholar
  21. Van Brakel JG, Modry S, Svata M (1981) Mercury porosimetry: state of the art. Powder Technol 29:1–12CrossRefGoogle Scholar
  22. Van TT, Beck K, Al-Mukhtar M (2007) Accelerated weathering tests on two highly porous limestones. Environ Geol 52:283–292. doi: 10.1007/s00254-006-0532-6 CrossRefGoogle Scholar
  23. Washburn EW (1921) Note on method of determining the distribution of pores sizes in a porous material. Proc Nat Acad Sci 7:115–116CrossRefGoogle Scholar
  24. Zaouia N, ELwartiti M, Baghdad B (2005) Superficial alteration and soluble salts in the calcarenite weathering. Case study of Almohade monuments in Rabat: Morocco. Environ Geol 48:742–747CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Laboratoire de Thermodynamique, Département de Physique, Faculté des SciencesMohammed V UniversityRabatMorocco
  2. 2.Centre de Microscopie, Département de Physique, Faculté des SciencesMohammed V UniversityRabatMorocco
  3. 3.Ecole et Observatoire des Sciences de la Terre, Institut de Physique du Globe Strasbourg UMR 7516Université Louis PasteurStrasbourg CedexFrance

Personalised recommendations