Skip to main content

Advertisement

Log in

Gut microbiota abnormalities, small intestinal bacterial overgrowth, and non-alcoholic fatty liver disease: An emerging paradigm

  • Review Article
  • Published:
Indian Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Evidence accumulates to implicate a role for the gut microbiota in non-alcoholic fatty liver disease (NAFLD)—a disorder that has reached almost epidemic proportions around the globe. For some time a disturbance in the gut microbiome, small intestinal bacterial overgrowth (SIBO), has been described among patients with liver disease, in general, and in the development and progression of NAFLD to nonalcoholic steatohepatitis (NASH), decompensated liver disease and hepatocellular cancer (HCC), in particular. More recently and permitted by the advent of high-throughput sequencing and allied molecular techniques, a much more detailed analysis of gut microbiota in NAFLD and NASH has become possible. In animal models, several mechanisms have been delineated which reveal how gut bacteria and their products could promote steatosis, hepatic inflammation, fibrosis, cirrhosis, and carcinogenesis. For understandable reasons evidence from human studies is less complete, but here again a plausible case is beginning to emerge to incriminate microbiota in NAFLD and NASH pathogenesis. Therapeutic interventions based on the modulation of the microbiome have been explored to some extent, but their application to everyday medical practice is still in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ghoshal UC, Ghoshal U. Small intestinal bacterial overgrowth and other intestinal disorders. Gastroenterol Clin N Am. 2017;46:103–20.

    Google Scholar 

  2. Ghoshal UC, Shukla R, Ghoshal U. Small intestinal bacterial overgrowth and irritable bowel syndrome: a bridge between functional organic dichotomy. Gut Liver. 2017;11:196–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ghoshal UC, Shukla R, Ghoshal U, Gwee KA, Ng SC, Quigley EM. The gut microbiota and irritable bowel syndrome: friend or foe? Int J Inf Secur. 2012;2012:151085.

    Google Scholar 

  4. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84.

    PubMed  Google Scholar 

  5. Li J, Zou B, Yeo YH, et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2019;4:389–98.

    PubMed  Google Scholar 

  6. Das K, Das K, Mukherjee PS, et al. Nonobese population in a developing country has a high prevalence of nonalcoholic fatty liver and significant liver disease. Hepatology. 2010;51:1593–602.

    CAS  PubMed  Google Scholar 

  7. Mohan V, Farooq S, Deepa M, Ravikumar R, Pitchumoni CS. Prevalence of non-alcoholic fatty liver disease in urban south Indians in relation to different grades of glucose intolerance and metabolic syndrome. Diabetes Res Clin Pract. 2009;84:84–91.

    CAS  PubMed  Google Scholar 

  8. Goel A, Gupta M, Aggarwal R. Gut microbiota and liver disease. J Gastroenterol Hepatol. 2014;29:1139–48.

    PubMed  Google Scholar 

  9. Ghoshal U, Ghoshal UC, Ranjan P, Naik SR, Ayyagari A. Spectrum and antibiotic sensitivity of bacteria contaminating the upper gut in patients with malabsorption syndrome from the tropics. BMC Gastroenterol. 2003;3:9.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shanahan ER, Zhong L, Talley NJ, Morrison M, Holtmann G. Characterisation of the gastrointestinal mucosa-associated microbiota: a novel technique to prevent cross-contamination during endoscopic procedures. Aliment Pharmacol Ther. 2016;43:1186–96.

    CAS  PubMed  Google Scholar 

  11. Chandra S, Dutta U, Noor MT, et al. Endoscopic jejunal biopsy culture: a simple and effective method to study jejunal microflora. Indian J Gastroenterol. 2010;29:226–30.

    PubMed  Google Scholar 

  12. Ghoshal UC, Ghoshal U. Investigations for dietary carbohydrate malabsorption and gut microbiota. In: Clinical and Basic Neurogastroenterology and Motility. eds. Rao SSC, Lee YY, Ghoshal UC. San Diego, USA: Academic Press Elsevier. 2019:359–70.

  13. Sajjad A, Mottershead M, Syn WK, Jones R, Smith S, Nwokolo CU. Ciprofloxacin suppresses bacterial overgrowth, increases fasting insulin but does not correct low acylated ghrelin concentration in non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2005;22:291–9.

    CAS  PubMed  Google Scholar 

  14. Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49:1877–87.

    CAS  PubMed  Google Scholar 

  15. Volynets V, Kuper MA, Strahl S, et al. Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Dig Dis Sci. 2012;57:1932–41.

    CAS  PubMed  Google Scholar 

  16. Nongthombam S, Nayak B, Kumar AR, et al. Prevalence of small intestinal bacterial overgrowth (SIB) and insulin reistance in both obese and non-obese non-alcoholic fatty liver disease (NAFLD) patients. J Clin Exp Hepatol. 2015;5 Suppl 2:S23–4.

    Google Scholar 

  17. Shanab AA, Scully P, Crosbie O, et al. Small intestinal bacterial overgrowth in nonalcoholic steatohepatitis: association with toll-like receptor 4 expression and plasma levels of interleukin 8. Dig Dis Sci. 2011;56:1524–34.

    PubMed  Google Scholar 

  18. Lei Q, Hu L, Wang Q, Chen D. The value of hydrogen an methane breath test to detect SIBO on exploring the role of intestinal flora in the incidence of nonalcoholic fatty liver disease. J Dig Dis. 2016; 17 Suppl 1:82.

  19. Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummins AG. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut. 2001;48:206–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ghoshal UC, Baba CS, Ghoshal U, et al. Low-grade small intestinal bacterial overgrowth is common in patients with non-alcoholic steatohepatitis on quantitative jejunal aspirate culture. Indian J Gastroenterol. 2017;36:390–9.

    PubMed  Google Scholar 

  21. Boursier J, Mueller O, Barret M, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63:764–75.

    CAS  PubMed  Google Scholar 

  22. Raman M, Ahmed I, Gillevet PM, et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2013;11:868–75.e1–3.

    CAS  PubMed  Google Scholar 

  23. Zhu L, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013;57:601–9.

    CAS  PubMed  Google Scholar 

  24. Wong VW, Tse CH, Lam TT, et al. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis--a longitudinal study. PLoS One. 2013;8:e62885.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Monteiro MP, Batterham RL. The importance of the gastrointestinal tract in controlling food intake and regulating energy balance. Gastroenterology. 2017;152:1707–17. e2.

    PubMed  Google Scholar 

  26. Bauer PV, Hamr SC, Duca FA. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota. Cell Mol Life Sci. 2016;73:737–55.

    CAS  PubMed  Google Scholar 

  27. Priyadarshini M, Wicksteed B, Schiltz GE, Gilchrist A, Layden BT. SCFA receptors in pancreatic beta cells: novel diabetes targets? Trends Endocrinol Metab. 2016;27:653–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature. 2016;534:213–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rau M, Rehman A, Dittrich M, et al. Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease. United European Gastroenterol J. 2018;6:1496–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50.

    CAS  PubMed  Google Scholar 

  31. Schonfeld P, Wojtczak L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res. 2016;57:943–54.

    PubMed  PubMed Central  Google Scholar 

  32. Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A. 2009;106:2365–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104:979–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol. 200; 47:571–9.

  35. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.

    PubMed  Google Scholar 

  36. Jumpertz R, Le DS, Turnbaugh PJ, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr. 2011;94:58–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tappenden KA, Drozdowski LA, Thomson AB, McBurney MI. Short-chain fatty acid-supplemented total parenteral nutrition alters intestinal structure, glucose transporter 2 (GLUT2) mRNA and protein, and proglucagon mRNA abundance in normal rats. Am J Clin Nutr. 1998;68:118–25.

    CAS  PubMed  Google Scholar 

  38. Arab JP, Karpen SJ, Dawson PA, Negro F, Okamoto H. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology. 2017;65:350–62.

  39. Xu X, So JS, Park JG, Lee AH. Transcriptional control of hepatic lipid metabolism by SREBP and ChREBP. Semin Liver Dis. 2013;33:301–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cope K, Risby T, Diehl AM. Increased gastrointestinal ethanol production in obese mice: implications for fatty liver disease pathogenesis. Gastroenterology. 2000;119:1340–7.

    CAS  PubMed  Google Scholar 

  41. Baker SS, Baker RD, Liu W, Nowak NJ, Zhu L. Role of alcohol metabolism in non-alcoholic steatohepatitis. PLoS One. 2010;5:e9570.

    PubMed  PubMed Central  Google Scholar 

  42. Engstler AJ, Aumiller T, Degen C, et al. Insulin resistance alters hepatic ethanol metabolism: studies in mice and children with non-alcoholic fatty liver disease. Gut. 2016;65:1564–71.

    CAS  PubMed  Google Scholar 

  43. Yuan J, Chen C, Cui J, et al. Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae. Cell Metab. 2019;30:675–688.e7.

    CAS  PubMed  Google Scholar 

  44. Molinero N, Ruiz L, Sanchez B, Margolles A, Delgado S. Intestinal bacteria interplay with bile and cholesterol metabolism: implications on host physiology. Front Physiol. 2019;10:185.

    PubMed  PubMed Central  Google Scholar 

  45. Zhong CY, Sun WW, Ma Y, et al. Microbiota prevents cholesterol loss from the body by regulating host gene expression in mice. Sci Rep. 2015;5:10512.

    PubMed  PubMed Central  Google Scholar 

  46. Sherriff JL, O'Sullivan TA, Properzi C, Oddo JL, Adams LA. Choline, its potential role in nonalcoholic fatty liver disease, and the case for human and bacterial genes. Adv Nutr. 2016;7:5–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Romano KA, Vivas EI, Amador-Noguez D, Rey FE. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio. 2015;6:e02481.

    PubMed  PubMed Central  Google Scholar 

  48. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tan X, Liu Y, Long J, et al. Trimethylamine N-oxide aggravates liver steatosis through modulation of bile acid metabolism and inhibition of farnesoid X receptor signaling in nonalcoholic fatty liver disease. Mol Nutr Food Res. 2019;63:e1900257.

    PubMed  Google Scholar 

  50. Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol. 2009;587 Pt 17:4153–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214.

    PubMed  Google Scholar 

  52. Galley JD, Bailey M, Kamp Dush C, Schoppe-Sullivan S, Christian LM. Maternal obesity is associated with alterations in the gut microbiome in toddlers. PLoS One. 2014;9:e113026.

    PubMed  PubMed Central  Google Scholar 

  53. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Houghton D, Stewart CJ, Day CP, Trenell M. Gut microbiota and lifestyle interventions in NAFLD. Int J Mol Sci. 2016;17:447.

    PubMed  PubMed Central  Google Scholar 

  55. Moschen AR, Wieser V, Tilg H. Dietary factors: major regulators of the gut’s microbiota. Gut Liver. 2012;6:411–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137:1716–24.e1–12.

    CAS  PubMed  Google Scholar 

  57. Murphy EF, Cotter PD, Healy S, et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut. 2010;59:1635–42.

    CAS  PubMed  Google Scholar 

  58. Clarke SF, Murphy EF, O'Sullivan O, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63:1913–20.

    CAS  PubMed  Google Scholar 

  59. Machado MV, Cortez-Pinto H. Gut microbiota and nonalcoholic fatty liver disease. Ann Hepatol. 2012;11:440–9.

    CAS  PubMed  Google Scholar 

  60. Sayin SI, Wahlstrom A, Felin J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17:225–35.

    CAS  PubMed  Google Scholar 

  61. Li F, Jiang C, Krausz KW, et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun. 2013;4:2384.

    PubMed  Google Scholar 

  62. Cox LM, Blaser MJ. Pathways in microbe-induced obesity. Cell Metab. 2013;17:883–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest. 2015;125:926–38.

    PubMed  PubMed Central  Google Scholar 

  64. Shukla R, Ghoshal U, Ranjan P, Ghoshal UC. Expression of toll-like receptors, pro-, and anti-inflammatory cytokines in relation to gut microbiota in irritable bowel syndrome: the evidence for its micro-organic basis. J Neurogastroenterol Motil. 2018;24:628–42.

    PubMed  PubMed Central  Google Scholar 

  65. Penas-Steinhardt A, Barcos LS, Belforte FS, et al. Functional characterization of TLR4 +3725 G/C polymorphism and association with protection against overweight. PLoS One. 2012;7:e50992.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Erridge C, Attina T, Spickett CM, Webb DJ. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr. 2007;86:1286–92.

    CAS  PubMed  Google Scholar 

  67. Kim KA, Gu W, Lee IA, Joh EH, Kim DH. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One. 2012;7:e47713.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328:228–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Castaner O, Goday A, Park YM, et al. The gut microbiome profile in obesity: a systematic review. Int J Endocrinol. 2018;2018:4095789.

    PubMed  PubMed Central  Google Scholar 

  70. Zeng Q, Li D, He Y, et al. Discrepant gut microbiota markers for the classification of obesity-related metabolic abnormalities. Sci Rep. 2019;9:13424.

    PubMed  PubMed Central  Google Scholar 

  71. Liu R, Hong J, Xu X, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017;23:859–68.

    CAS  PubMed  Google Scholar 

  72. Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25:1096–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Luck H, Khan S, Kim JH, et al. Gut-associated IgA(+) immune cells regulate obesity-related insulin resistance. Nat Commun. 2019;10:3650.

    PubMed  PubMed Central  Google Scholar 

  74. Scott FI, Horton DB, Mamtani R, et al. Administration of antibiotics to children before age 2 years increases risk for childhood obesity. Gastroenterology. 2016;151:120–9. e5.

    CAS  PubMed  Google Scholar 

  75. Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014;588:4223–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Falony G, Joossens M, Vieira-Silva S, et al. Population-level analysis of gut microbiome variation. Science. 2016;352:560–4.

    CAS  PubMed  Google Scholar 

  77. Zhernakova A, Kurilshikov A, Bonder MJ, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352:565–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Quigley EMM. Symptoms and the small intestinal microbiome - the unknown explored. Nat Rev Gastroenterol Hepatol. 2019;16:457–8.

    CAS  PubMed  Google Scholar 

  79. Quigley EMM. The Spectrum of small intestinal bacterial overgrowth (SIBO). Curr Gastroenterol Rep. 2019;21:3.

    PubMed  Google Scholar 

  80. Quigley EMM. Gut microbiome as a clinical tool in gastrointestinal disease management: are we there yet? Nat Rev Gastroenterol Hepatol. 2017;14:315–20.

    PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank Ms. Shikha Agnihotri, M.Sc., Ms. Sushmita Rai, Department of Gastroenterology, and Mr. Anil, Medical Illustration Unit, SGPGI, Lucknow for their help. The authors also thank Prof. Gerald Holtmann, University of Brisbane, Australia for providing the photograph of Brisbane biospy forceps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eamonn M. M. Quigley.

Ethics declarations

Conflict of interest

UCG, AG, and EMMQ declare that they have no conflict of interest in relation to this paper.

Disclaimer

The authors are solely responsible for the data and the contents of the paper. In no way, the Honorary Editor-in-Chief, Editorial Board Members, or the printer/publishers are responsible for the results/findings and content of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoshal, U.C., Goel, A. & Quigley, E.M.M. Gut microbiota abnormalities, small intestinal bacterial overgrowth, and non-alcoholic fatty liver disease: An emerging paradigm. Indian J Gastroenterol 39, 9–21 (2020). https://doi.org/10.1007/s12664-020-01027-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12664-020-01027-w

Keywords

Navigation