Skip to main content

Advertisement

Log in

Post-COVID Mucormycosis-Conceptual Etiology and New Treatment Options

  • CLINICAL PAPER
  • Published:
Journal of Maxillofacial and Oral Surgery Aims and scope Submit manuscript

Abstract

Introduction

Coronavirus disease 2019 (COVID-19) has caused a massive pandemic in world. It is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is also a doorway for other opportunistic bacterial and fungal infections. Mucormycosis is strongly connected with patients suffering from COVID-19 disease. The major factors attributed are steroid induced immunosuppression; systemic disorders especially diabetes mellitus, hypoxia, and metabolic acidosis.

Aims and Objectives

Unusual presentations of post-COVID mucormycosis in young patients without diabetes mellitus were observed. The new concept focuses on pathophysiology of the post-COVID mucormycosis which might involve other factors of coagulopathy and microembolism of vessels which provides a niche for fungal infection to invade in patients.

Results

The new concept of treating post Covid mucormycosis by combining the anti-fungal drugs along with fibrinolytic agents reduces the microcoagulopathy, increases the recovery rate and healing of the mucormycosis.

Conclusions

Based on the clinical and application of scientific knowledge, this concept paper focuses on new hypothesis and treatment plans of post-COVID mucormycosis and an attempt to explain the difference between conventional mucormycosis and post-COVID mucormycosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. McFadyen JD, Stevens H, Peter K (2020) the emerging threat of (micro) thrombosis in COVID-19 and its therapeutic implications. Circ Res 127:571–587. https://doi.org/10.1161/CIRCRESAHA.120.317447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kubin CJ, McConville TH, Dietz D et al (2021) Characterization of bacterial and fungal infections in hospitalized patients with COVID-19 and factors associated with healthcare-associated infections. Open Forum Infect Dis 8:ofab201. https://doi.org/10.1093/ofid/ofab201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh AK, Singh R, Joshi SR, Misra A (2021) Mucormycosis in COVID-19: a systematic review of cases reported worldwide and in India. Diabetes Metab Syndr Clin Res Rev. https://doi.org/10.1016/j.dsx.2021.05.019

    Article  Google Scholar 

  4. Kumar KR, Mucormycosis P (2021) A black fungus-post covid complications. J Regen Biol Med. 3(4):1–8. https://doi.org/10.37191/Mapsci-2582-385X-3(4)-078

    Article  Google Scholar 

  5. Sugar AM (2000) In: Mandell GL, Bennett JE, Dolin R (eds) Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, 5th edn. Churchill Livingstone, New York

  6. Cui S, Chen S, Li X, Liu S, Wang F (2020) Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost 18:1421–1424. https://doi.org/10.1111/jth.14830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM, Kaptein FHJ, van Paassen J, Stals MAM, Huisman MV et al (2020) Incidence of thrombotic complications in critically ill ICU patients with COVID19. Thromb Res 191:145–147. https://doi.org/10.1016/j.thromres.2020.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers D, Kant KM, Kaptein FHJ, van Paassen J, Stals MAM, Huisman MV et al (2020) Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res 191:148–150. https://doi.org/10.1016/j.thromres.2020.04.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, Chang J, Hong C, Zhou Y, Wang D, Miao X et al (2020) Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 77:1–9. https://doi.org/10.1001/jamaneurol.2020.1127

    Article  PubMed Central  Google Scholar 

  10. Oxley TJ, Mocco J, Majidi S, Kellner CP, Shoirah H, Singh IP, De Leacy RA, Shigematsu T, Ladner TR, Yaeger KA et al (2020) Large-vessel stroke as a presenting feature of COVID-19 in the young. N Engl J Med 382:e60. https://doi.org/10.1056/NEJMc2009787

    Article  PubMed  Google Scholar 

  11. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q et al (2020) Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 2020:e200950. https://doi.org/10.1001/jamacardio.2020.0950

    Article  Google Scholar 

  12. Zheng YY, Ma YT, Zhang JY, Xie X (2020) COVID-19 and the cardiovascular system. Nat Rev Cardiol 17:259–260. https://doi.org/10.1038/s41569-020-0360-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, Ji R, Wang H, Wang Y, Zhou Y (2020) Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis 94:91–95. https://doi.org/10.1016/j.ijid.2020.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu Z, McGoogan JM (2020) Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA. https://doi.org/10.1001/jama.2020.2648

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liao S, Woulfe T, Hyder S, Merriman E, Simpson D, Chunilal S (2014) Incidence of venous thromboembolism in different ethnic groups: a regional direct comparison study. J Thromb Haemost 12:214–219. https://doi.org/10.1111/jth.12464

    Article  CAS  PubMed  Google Scholar 

  16. White RH, Keenan CR (2009) Effects of race and ethnicity on the incidence of venous thromboembolism. Thromb Res 123(Suppl 4):S11–S17. https://doi.org/10.1016/S0049-3848(09)70136-7

    Article  CAS  PubMed  Google Scholar 

  17. Zakai NA, McClure LA (2011) Racial differences in venous thromboembolism. J Thromb Haemost 9:1877–1882. https://doi.org/10.1111/j.1538-7836.2011.04443.x

    Article  CAS  PubMed  Google Scholar 

  18. Edelstein LC, Simon LM, Montoya RT, Holinstat M, Chen ES, Bergeron A, Kong X, Nagalla S, Mohandas N, Cohen DE et al (2013) Racial differences in human platelet PAR4 reactivity reflect expression of PCTP and miR-376c. Nat Med 19:1609–1616. https://doi.org/10.1038/nm.3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang N, Li D, Wang X, Sun Z (2020) Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 18:844–847. https://doi.org/10.1111/jth.14768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boilard E, Paré G, Rousseau M, Cloutier N, Dubuc I, Lévesque T, Borgeat P, Flamand L (2014) Influenza virus H1N1 activates platelets through FcγRIIA signaling and thrombin generation. Blood 123:2854–2863. https://doi.org/10.1182/blood-2013-07-515536

    Article  CAS  PubMed  Google Scholar 

  21. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y et al (2020) Clinical characteristics of 138 hospitalized patients with el coronavirus-infected pneumonia in Wuhan, China. JAMA 323:1061–1069. https://doi.org/10.1001/jama.2020.1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X et al (2020) Clinical course and risk factors for mortality of adult inpatients with COVID19 in Wuhan, China: a retrospective cohort study. Lancet 395:1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, Zhang Z (2020) D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost 18:1324–1329. https://doi.org/10.1111/jth.14859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lax SF, Skok K, Zechner P, Kessler H, Kaufmann N, Koelblinger C, Vander K, Bargfrieder U, Trauner M (2020) Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series. Ann Intern Med 173(5):350–361. https://doi.org/10.7326/M20-2566

    Article  PubMed  Google Scholar 

  25. Wichmann D, Sperhake JP, Lutgehetmann M, Steurer S, Edler C, Heinemann A, Heinrich F, Mushumba H, Kniep I, Schroder AS et al (2020) Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med 173(4):268–277. https://doi.org/10.7326/M20-2003

    Article  PubMed  Google Scholar 

  26. Lang ZW, Zhang LJ, Zhang SJ, Meng X, Li JQ, Song CZ, Sun L, Zhou YS, Dwyer DE (2003) A clinicopathological study of three cases of severe acute respiratory syndrome (SARS). Pathology 35:526–531. https://doi.org/10.1080/00313020310001619118

    Article  PubMed  Google Scholar 

  27. Ding Y, Wang H, Shen H, Li Z, Geng J, Han H, Cai J, Li X, Kang W, Weng D et al (2003) The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol 200:282–289. https://doi.org/10.1002/path.1440

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hwang DM, Chamberlain DW, Poutanen SM, Low DE, Asa SL, Butany J (2005) Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod Pathol 18:1–10. https://doi.org/10.1038/modpathol.3800247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Franks TJ, Chong PY, Chui P, Galvin JR, Lourens RM, Reid AH, Selbs E, McEvoy CP, Hayden CD, Fukuoka J et al (2003) Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Hum Pathol 34:743–748. https://doi.org/10.1016/s0046-8177(03)00367-8

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK, Reznikov LR, Gibson-Corley KN, Meyerholz DK, McCray PB Jr (2016) Middle east respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis 213:712–722. https://doi.org/10.1093/infdis/jiv499

    Article  CAS  PubMed  Google Scholar 

  31. Tomashefski JF Jr, Davies P, Boggis C, Greene R, Zapol WM, Reid LM (1983) The pulmonary vascular lesions of the adult respiratory distress syndrome. Am J Pathol 112:112–126

    PubMed  PubMed Central  Google Scholar 

  32. Fox SE, Akmatbekov A, Harbert JL, Li G, Quincy Brown J, Vander Heide RS (2020) Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med 8(7):681–686. https://doi.org/10.1016/S2213-2600(20)30243-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, Rech R, Colombo R, Antinori S, Corbellino M et al (2020) Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis 20(10):1135–1140. https://doi.org/10.1016/S1473-3099(20)30434-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dolhnikoff M, Duarte-Neto AN, de Almeida Monteiro RA, da Silva LFF, de Oliveira EP, Saldiva PHN, Mauad T, Negri EM (2020) Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19. J Thromb Haemost 18:1517–1519. https://doi.org/10.1111/jth.14844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roden MM, Zaoutis TE, Buchanan WL et al (2005) Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin Infect Dis 41:634–653

    Article  PubMed  Google Scholar 

  36. Skiada A, Pagano L, Groll A et al (2011) Zygomycosis in Europe: analysis of 230 cases accrued by the registry of the European confederation of medical mycology (ECMM) working group on zygomycosis between 2005 and 2007. Clin Microbiol Infect 17:1859–1867

    Article  CAS  PubMed  Google Scholar 

  37. Sridhara SR, Paragache G, Panda NK, Chakrabarti A (2005) Mucormycosis in immunocompetent individuals: an increasing trend. J Otolaryngol 34:402–406

    Article  PubMed  Google Scholar 

  38. Pagano L, Ricci P, Tonso A et al (1997) Mucormycosis in patients with haematological malignancies: a retrospective clinical study of 37 cases. Br J Haematol 99:331–336

    Article  CAS  PubMed  Google Scholar 

  39. Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium, Cornely OA, Alastruey-Izquierdo A, Arenz D, Chen SCA, Dannaoui E, Hochhegger B, Hoenigl M, Jensen HE, Lagrou K, Lewis RE, Mellinghoff SC, Mer M, Pana ZD, Seidel D, Sheppard DC, Wahba R, Akova M, Alanio A, Al-Hatmi AMS, Arikan-Akdagli S, Badali H, Ben-Ami R, Bonifaz A, Bretagne S, Castagnola E, Chayakulkeeree M, Colombo AL, Corzo-León DE, Drgona L, Groll AH, Guinea J, Heussel C-P, Ibrahim AS, Kanj SS, Klimko N, Lackner M, Lamoth F, Lanternier F, Lass-Floerl C, Lee D-G, Lehrnbecher T, Lmimouni BE, Mares M, Maschmeyer G, Meis JF, Meletiadis J, Morrissey CO, Nucci M, Oladele R, Pagano L, Pasqualotto A, Patel A, Racil Z, Richardson M, Roilides E, Ruhnke M, Seyedmousavi S, Sidharthan N, Singh N, Sinko J, Skiada A, Slavin M, Soman R, Spellberg B, Steinbach W, Tan BH, Ullmann AJ, Vehreschild JJ, Vehreschild MJGT, Walsh TJ, White PL, Wiederhold NP, Zaoutis T, Chakrabarti A, for the Mucormycosis ECMM MSG Global Guideline Writing Group. https://doi.org/10.1016/S1473-3099(19)30312-3

  40. Bae MS, Kim EJ, Lee KM, Choi WS (2012) Rapidly progressive rhino­orbito­cerebralmucormycosis complicated with unilateral internal carotid artery occlusion: a case report. Neurointervention 7:45–49

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vallverdu Vidal M, Iglesias Moles S, Palomar MM (2017) Rhino­orbital­cerebral mucormycosis in a critically ill patient. Med Intensiva 41:509–510

    CAS  PubMed  Google Scholar 

  42. Bhansali A, Bhadada S, Sharma A et al (2004) Presentation and outcome of rhino­orbital­cerebral mucormycosis in patients with diabetes. Postgrad Med J 80:670–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goh LC, Shakri ED, Ong HY et al (2017) A seven­year retrospective analysis of the clinicopathological and mycological manifestations of fungal rhinosinusitis in a single­centre tropical climate hospital. J Laryngol Otol 131:813–816

    Article  CAS  PubMed  Google Scholar 

  44. Singla K, Samra T, Bhatia N (2018) Primary cutaneous mucormycosis in a trauma patient with Morel­Lavallee lesion. Indian J Crit Care Med 22:375–377

    Article  PubMed  PubMed Central  Google Scholar 

  45. Neblett Fanfair R, Benedict K, Bos J et al (2012) Necrotizing cutaneous mucormycosis after a tornado in Joplin, Missouri, in 2011. N Engl J Med 367:2214–2225

    Article  PubMed  Google Scholar 

  46. Al-Tarrah K, Abdelaty M, Behbahani A, Mokaddas E, Soliman H, Albader A (2016) Cutaneous mucormycosis postcosmetic surgery: a case report and review of the literature. Medicine (Baltimore) 95:e4185

    Article  PubMed  Google Scholar 

  47. Warkentien T, Rodriguez C, Lloyd B et al (2012) Invasive mold infections following combat­related injuries. Clin Infect Dis 55:1441–1449

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rodriguez CJ, Tribble DR, Malone DL et al (2018) Treatment of suspected invasive fungal infection in war wounds. Mil Med 183:142–146

    Article  PubMed  Google Scholar 

  49. Hay RJ (2005) Mucormycosis: an infectious complication of traumatic injury. Lancet 365:830–831

    Article  CAS  PubMed  Google Scholar 

  50. Jayasuriya NS, Tilakaratne WM, Amaratunga EA, Ekanayake MK (2006) An unusual presentation of rhinofacial zygomycosis due to Cunninghamella sp in an immunocompetent patient: a case report and literature review. Oral Dis 12:67–69

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y, Zhu M, Bao Y et al (2018) Cutaneous mucormycosis caused by Rhizopus microsporus in an immunocompetent patient: a case report and review of literature. Medicine (Baltimore) 97:e11141

    Article  PubMed  Google Scholar 

  52. Jundt JS, Wong MEK, Tatara AM, Demian NM (2018) Invasive cutaneous facial mucormycosis in a trauma patient. J Oral Maxillofac Surg 76:1930.e1-1930.e5

    Article  PubMed  Google Scholar 

  53. Thomson SR, Bade PG, Taams M, Chrystal V (1991) Gastrointestinal mucormycosis. Br J Surg 78:952–954

    Article  CAS  PubMed  Google Scholar 

  54. Dekkers R, Verweij PE, Weemaes CM, Severijnen RS, Van Krieken JH, Warris A (2008) Gastrointestinal zygomycosis due to Rhizopus microsporus var. rhizopodiformis as a manifestation of chronic granulomatous disease. Med Mycol 46:491–494

    Article  PubMed  Google Scholar 

  55. Roilides E, Zaoutis TE, Katragkou A, Benjamin DK Jr, Walsh TJ (2009) Zygomycosis in neonates: an uncommon but life­threatening infection. Am J Perinatol 26:565–573

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sangwan J, Juyal D, Negi V, Singh M, Sharma N (2013) Rhinocerebral mucormycosis with therapeutic challenges encountered in a rural resource constrained setting. OA Case Rep 2(6):54

    Google Scholar 

  57. Shoham S, Magill SS, Merz WG et al (2010) Primary treatment of zygomycosis with liposomal amphotericin B: analysis of 28 cases. Med Mycol 48:511–517

    Article  CAS  PubMed  Google Scholar 

  58. Ruping MJ, Heinz WJ, Kindo AJ et al (2010) Forty­one recent cases of invasive zygomycosis from a global clinical registry. J Antimicrob Chemother 65:296–302

    Article  CAS  PubMed  Google Scholar 

  59. Lanternier F, Poiree S, Elie C et al (2015) Prospective pilot study of high­dose (10 mg/kg/day) liposomal amphotericin B (L­AMB) for the initial treatment of mucormycosis. J Antimicrob Chemother 70:3116–3123

    Article  CAS  PubMed  Google Scholar 

  60. Pagano L, Valentini CG, Posteraro B et al (2009) Zygomycosis in Italy: a survey of FIMUA­ECMM (Federazione Italiana di micopatologia umana ed animale and European confederation of medical mycology). J Chemother 21:322–329

    Article  CAS  PubMed  Google Scholar 

  61. Cornely OA, Maertens J, Bresnik M et al (2007) Liposomal amphotericin B as initial therapy for invasive mold infection: a randomized trial comparing a high­loading dose regimen with standard dosing (AmBiLoad trial). Clin Infect Dis 44:1289–1297

    Article  CAS  PubMed  Google Scholar 

  62. Stanzani M, Vianelli N, Cavo M, Maritati A, Morotti M, Lewis RE (2017) Retrospective cohort analysis of liposomal amphotericin b nephrotoxicity in patients with hematological malignancies. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.02651-16

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kyvernitakis A, Torres HA, Jiang Y, Chamilos G, Lewis RE, Kontoyiannis DP (2016) Initial use of combination treatment does not impact survival of 106 patients with haematologic malignancies and mucormycosis: a propensity score analysis. Clin Microbiol Infect 22:811

    Article  Google Scholar 

  64. Pagano L, Offidani M, Fianchi L et al (2004) Mucormycosis in hematologic patients. Haematologica 89:207–214

    PubMed  Google Scholar 

  65. Valentini CG, Candoni A, Fianchi L et al (2010) Efficacy of combined surgery and antifungal therapies for the management of invasive zygomycoses in patients with haematological malignancies. Mycoses 53:89–92

    Article  CAS  PubMed  Google Scholar 

  66. Tedder M, Spratt JA, Anstadt MP, Hegde SS, Tedder SD, Lowe JE (1994) Pulmonary mucormycosis: results of medical and surgical therapy. Ann Thorac Surg 57:1044–1050

    Article  CAS  PubMed  Google Scholar 

  67. Marty FM, Cornely OA, Mullane KM et al (2018) Isavuconazole for treatment of invasive fungal diseases caused by more than one fungal species. Mycoses 61:485–497

    Article  CAS  PubMed  Google Scholar 

  68. Marty FM, Ostrosky-Zeichner L, Cornely OA et al (2016) Isavuconazole treatment for mucormycosis: a single­arm open­label trial and case­control analysis. Lancet Infect Dis 16:828–837

    Article  CAS  PubMed  Google Scholar 

  69. Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, Nigoghossian C, Ageno W, Madjid M, Guo Y et al (2020) Global COVID-19 thrombosis collaborative group, endorsed by the ISTH, NATF, ESVM, and the IUA, supported by the ESC working group on pulmonary circulation and right ventricular function. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC State-of-the-art review. JAm Coll Cardiol. 75:2950–2973. https://doi.org/10.1016/j.jacc.2020.04.031

    Article  CAS  Google Scholar 

  70. Connors JM, Levy JH (2020) COVID-19 and its implications for thrombosis and anticoagulation. Blood 135:2033–2040. https://doi.org/10.1182/blood.2020006000

    Article  CAS  PubMed  Google Scholar 

  71. Wang L, Li H, Gu X, Wang Z, Liu S, Chen L (2016) Effect of antiplatelet therapy on acute respiratory distress syndrome and mortality in critically ill patients: a meta-analysis. PLoS ONE 11:e0154754. https://doi.org/10.1371/journal.pone.0154754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lang J, Yang N, Deng J, Liu K, Yang P, Zhang G, Jiang C (2011) Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS ONE 6:e23710. https://doi.org/10.1371/journal.pone.0023710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Arnold K, Xu Y, Sparkenbaugh EM, Li M, Han X, Zhang X, Xia K, Piegore M, Zhang F, Zhang X et al (2020) Design of anti-inflammatory heparan sulfate to protect against acetaminophen-induced acute liver failure. Sci Transl Med 12:eaav8075. https://doi.org/10.1126/scitranslmed.aav8075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Poterucha TJ, Libby P, Goldhaber SZ (2017) More than an anticoagulant: Do heparins have direct anti-inflammatory effects? Thromb Haemost 117:437–444. https://doi.org/10.1160/TH16-08-0620

    Article  PubMed  Google Scholar 

  75. Mycroft-West C, Su D, Elli S, Guimond S, Miller G, Turnbull J, Yates E, Guerrini M, Fernig D, Lima M, Skidmore M (2020) The 2019 coronavirus (SARS-cov-2) surface protein (spike) s1 receptor binding domain undergoes conformational change upon heparin binding. bioRxiv. https://doi.org/10.1101/2020.02.29.971093

    Article  Google Scholar 

  76. Ouyang Y, Wang Y, Liu B, Ma X, Ding R (2019) Effects of antiplatelet therapy on the mortality rate of patients with sepsis: a meta-analysis. J Crit Care 50:162–168. https://doi.org/10.1016/j.jcrc.2018.12.004

    Article  CAS  PubMed  Google Scholar 

  77. Carestia A, Davis RP, Grosjean H, Lau MW, Jenne CN (2020) Acetylsalicylic acid inhibits intravascular coagulation during Staphylococcus aureus-induced sepsis in mice. Blood 135:1281–1286. https://doi.org/10.1182/blood.2019002783

    Article  PubMed  Google Scholar 

  78. Liu X, Li Z, Liu S, Sun J, Chen Z, Jiang M, Zhang Q, Wei Y, Wang X, Huang YY et al (2020) Potential therapeutic effects of dipyridamole in the severely ill patients with covid-19. Acta Pharm Sin B. https://doi.org/10.1016/j.apsb.2020.04.008

    Article  PubMed  PubMed Central  Google Scholar 

  79. Asakura H, Ogawa H (2020) Potential of heparin and nafamostat combination therapy for COVID-19. J Thromb Haemost 18:1521–1522. https://doi.org/10.1111/jth.14858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yamamoto M, Matsuyama S, Li X, Takeda M, Kawaguchi Y, Inoue JI, Matsuda Z (2016) Identification of nafamostat as a potent inhibitor of middle east respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrob Agents Chemother 60:6532–6539. https://doi.org/10.1128/AAC.01043-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaji Thomas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavishi, M., Thomas, S., Nair, P.P. et al. Post-COVID Mucormycosis-Conceptual Etiology and New Treatment Options. J. Maxillofac. Oral Surg. (2024). https://doi.org/10.1007/s12663-024-02124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12663-024-02124-5

Keywords

Navigation