Skip to main content

Advertisement

Log in

Ti–15Mo Alloy Decreases the Stress Concentration in Mandibular Angle Fracture Internal Fixation Hardware

  • Original Article
  • Published:
Journal of Maxillofacial and Oral Surgery Aims and scope Submit manuscript

Abstract

Objectives

Comparison of the mechanical stability of 2.0 plates made of commercially pure titanium (cpTi) and a titanium–molybdenum (Ti–15Mo) alloy and two methods of internal fixation employed mandibular angle fractures, using 3D finite element analysis.

Materials and Methods

Four groups were evaluated. For the cpTi: group Eng 1P, one 4-hole plate and 4 screws 6 mm long, in the tension zone of the mandible; group Eng 2P, two 4-hole plates, one in the tension zone of the mandible and the other in the compression zone, both were fixed with 8 screws 6 mm long. The same groups were created for the Ti–15Mo alloy. A 100 N compressive load was applied to the occlusal surface of the mandibular first molar on the plated side.

Results

When considering the von Mises equivalent stress (σvM) values for the comparison between both groups with one plate, a decrease of 10.5% in the plate and a decrease of 29.0% in the screws for the Ti–15Mo group was observed. Comparing the same groups with two plates, a decrease of 28.5% in the screws was shown for the Ti–15Mo alloy group. No significant differences were observed when considering maximum and minimum principal stresses (σmax, σmin), and maximum principal strain (εmax) to the mandibular bone. The Ti–15Mo alloy plates substantially decreased the stress concentration in the screws for both internal fixation techniques and in the plate for the Ti–15Mo 1 plate group.

Conclusion

From a clinical standpoint, the use of Ti–Mo alloy with reduced stiffness will decrease the stress shielding between the hardware and bone, influencing the outcome of the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chrcanovic BR (2013) Fixation of mandibular angle fractures: in vitro biomechanical assessments and computer-based studies. Oral Maxillofac Surg 17:251–268

    Article  Google Scholar 

  2. Al-Moraissi EA, Ellis E 3rd (2014) What method for management of unilateral mandibular angle fractures has the lowest rate of postoperative complications? A systematic review and meta-analysis. J Oral Maxillofac Surg 72:2197–2211

    Article  Google Scholar 

  3. Zhan S, Jiang Y, Cheng Z, Ye J (2014) A meta-analysis comparing the 2.0-mm locking plate system with the 2.0-mm nonlocking plate system in treatment of mandible fractures. J Craniofac Surg 25:2094–2097

    Article  Google Scholar 

  4. Kanubaddy SR, Devireddy SK, Rayadurgam KK, Gali R, Dasari MR, Pampana S (2016) Management of mandibular angle fractures: single stainless steel linear miniplate versus rectangular grid plate-a prospective randomised study. J Maxillofac Oral Surg 15:535–541

    Article  Google Scholar 

  5. Lovald ST, Wagner JD, Baack B (2009) Biomechanical optimization of bone plates used in rigid fixation of mandibular fractures. J Oral Maxillofac Surg 67:973–985

    Article  Google Scholar 

  6. Kharazia AZ, Fathia MH, Bahmany F (2010) Design of a textile composite bone plate using 3D-finite element method. Mater Des 31:1468–1474

    Article  Google Scholar 

  7. Niinomi M, Nakai M (2011) Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int J Biomater 2011:10. https://doi.org/10.1155/2011/836587

    Article  CAS  Google Scholar 

  8. Jackson MJ, Ahmed W (2007) Titanium and titanium alloy applications in medicine. In: Mark JJ, Waqar A (eds) Surface engineered surgical tools and medical devices. Springer, Boston, pp 533–576

    Chapter  Google Scholar 

  9. Kumar S, Narayanan TS (2008) Corrosion behaviour of Ti–15Mo alloy for dental implant applications. J Dent 36:500–507

    Article  CAS  Google Scholar 

  10. Niinomi M (2008) Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater 1:30–42

    Article  Google Scholar 

  11. Oliveira NTC, Aleixo G, Caram R, Guastaldi AC (2007) Development of Ti–Mo alloys for biomedical applications: microstructure and electrochemical characterization. Mater Sci Eng, A 452–3:727–731

    Article  Google Scholar 

  12. Oliveira NTC, Guastaldi AC (2008) Electrochemical behavior of Ti–Mo alloys applied as biomaterial. Corros Sci 50:938–945

    Article  CAS  Google Scholar 

  13. Oliveira NTC, Guastaldi AC (2009) Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications. Acta Biomater 5:399–405

    Article  CAS  Google Scholar 

  14. Sumitomo N, Noritake K, Hattori T, Morikawa K, Niwa S, Sato K, Niinomi M (2008) Experiment study on fracture fixation with low rigidity titanium alloy: plate fixation of tibia fracture model in rabbit. J Mater Sci Mater Med 19:1581–1586

    Article  CAS  Google Scholar 

  15. Lovald ST, Khraishi T, Wagner J, Baack B, Kelly J, Wood J (2006) Comparison of plate-screw systems used in mandibular fracture reduction: finite element analysis. J Biomech Eng 128:654–662

    Article  Google Scholar 

  16. Wang H, Ji B, Jiang W, Liu L, Zhang P, Tang W, Tian W, Fan Y (2010) Three-dimensional finite element analysis of mechanical stress in symphyseal fractured human mandible reduced with miniplates during mastication. J Oral Maxillofac Surg 68:1585–1592

    Article  Google Scholar 

  17. Huempfner-Hierl H, Schaller A, Hemprich A, Hierl T (2014) Biomechanical investigation of naso-orbitoethmoid trauma by finite element analysis. Br J Oral Maxillofac Surg 52:850–853

    Article  Google Scholar 

  18. Darwich MA, Albogha MH, Abdelmajeed A, Darwich K (2016) Assessment of the biomechanical performance of 5 plating techniques in fixation of mandibular subcondylar fracture using finite element analysis. J Oral Maxillofac Surg 74(794):e1–e8

    Google Scholar 

  19. Kharmanda G, Kharma MY (2017) Evaluating the effect of minimizing screws on stabilization of symphysis mandibular fracture by 3D finite element analysis. J Maxillofac Oral Surg 16:205–211

    Article  Google Scholar 

  20. Wang R, Liu Y, Wang JH, Baur DA (2017) Effect of interfragmentary gap on the mechanical behavior of mandibular angle fracture with three fixation designs: a finite element analysis. J Plast Reconstr Aesthet Surg 70:360–369

    Article  Google Scholar 

  21. Yamaguchi S, Anchieta RB, Guastaldi FPS, Tovar N, Tawara D, Imazato S, Coelho PG (2017) In silico analysis of the biomechanical stability of commercially pure Ti and Ti–15Mo plates for the treatment of mandibular angle fracture. J Oral Maxillofac Surg 75:1004.e1–1004.e9

    Article  Google Scholar 

  22. Bregagnolo LA, Bertelli PF, Ribeiro MC, Sverzut CE, Trivellato AE (2011) Evaluation of in vitro resistance of titanium and resorbable (poly-L-DL-lactic acid) fixation systems on the mandibular angle fracture. Int J Oral Maxillofac Surg 40:316–321

    Article  CAS  Google Scholar 

  23. Almeida EO, Rocha EP, Assunção WG, Júnior AC, Anchieta RB (2011) Cortical bone stress distribution in mandibles with different configurations restored with prefabricated bar-prosthesis protocol: a three-dimensional finite-element analysis. J Prosthodont 20:29–34

    Article  Google Scholar 

  24. Semeghini Guastaldi FP, Hochuli-Vieira E, Guastaldi AC (2014) Biomechanical study in polyurethane mandibles of different metal plates and internal fixation techniques, employed in mandibular angle fractures. J Craniofac Surg 25:2246–2250

    Article  Google Scholar 

  25. Choi AH, Conway RC, Taraschi V, Ben-Nissan B (2015) Biomechanics and functional distortion of the human mandible. J Investig Clin Dent 6:241–251

    Article  Google Scholar 

  26. Gilardino MS, Chen E, Bartlett SP (2009) Choice of internal rigid fixation materials in the treatment of facial fractures. Craniomaxillofac Trauma Reconstr 2:49–60

    Article  Google Scholar 

  27. Ellis E 3rd, Esmail N (2009) Malocclusions resulting from loss of fixation after sagittal split ramus osteotomies. J Oral Maxillofac Surg 67:2528–2533

    Article  Google Scholar 

  28. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425

    Article  CAS  Google Scholar 

  29. Oliveira NT, Guastaldi FP, Perrotti V, Hochuli-Vieira E, Guastaldi AC, Piattelli A, Iezzi G (2013) Biomedical Ti–Mo alloys with surface machined and modified by laser beam: biomechanical, histological, and histometric analysis in rabbits. Clin Implant Dent Relat Res 15:427–437

    Article  Google Scholar 

  30. Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8:3888–3903

    Article  CAS  Google Scholar 

  31. Ichim I, Swain M, Kieser JA (2006) Mandibular biomechanics and development of the human chin. J Dent Res 85:638–642

    Article  CAS  Google Scholar 

  32. Sato FRL, Asprino L, Noritomi PY, Silva JVL, Moraes M (2012) Comparison of five different fixation techniques of sagittal split ramus osteotomy using three-dimensional finite elements analysis. Int J Oral Maxillofac Surg 41:934–941

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Engimplan® (Rio Claro, SP, Brazil) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. P. S. Guastaldi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guastaldi, F.P.S., Martini, A.P., Rocha, E.P. et al. Ti–15Mo Alloy Decreases the Stress Concentration in Mandibular Angle Fracture Internal Fixation Hardware. J. Maxillofac. Oral Surg. 19, 314–320 (2020). https://doi.org/10.1007/s12663-019-01251-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12663-019-01251-8

Keywords

Navigation