Buccal Mucosal Epithelial Cells Downregulate CTGF Expression in Buccal Submucosal Fibrosis Fibroblasts

Abstract

Introduction

Oral submucosal fibrosis (OSMF) is a chronic debilitating fibrotic disease of the oral cavity and is a serious health hazard in south Asia and, increasingly, the rest of the world. The molecular basis behind various treatment modalities to treat OSMF still remains unclear. In this study, we have investigated the in vitro ability of the buccal mucosal cells to reduce the proliferation of the fibroblasts of the fibrotic area in co-culture of cells and also at the molecular levels to reduce the level of connective tissue growth factor (CTGF) in the OSMF fibroblasts (SMF-F).

Materials and Methods

The study compares isolation, morphological and proliferation kinetics of SMF-F and BMF cells with and without co-culturing with BMEs. In addition, we have compared the mRNA expression levels of CTGF in SMF-F co-cultured BME and non-co-cultured SMF-F cells using validated real-time quantitative PCR (RT-qPCR) method.

Results

The basic morphological characteristics of SMF-F were similar to BMF, but the former cells had higher proliferation rate in early passages compared to late passage state. We also observed that the CTGF expression levels in SMF-F under co-culture conditions of BME were consistently and significantly downregulated in all four different SMF-F-derived cells from four different patients.

Conclusion

Rapid proliferation and collagen synthesis in SMF-F as against BMF cells are the factors that confirm the innate nature of fibrosis fibroblasts (SMF-F). Further, the CTGF expression level in SMF-F was significantly suppressed by BME in co-culture conditions against controls (BMF). Considered together, this suggests that the cell therapeutic candidate of BME could be used in treating OSMF.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Shirani S, Kargahi N, Razavi SM, Homayoni S (2014) Epithelial dysplasia in oral cavity. Iran J Med Sci 39:406–417

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Surej KL, Kurien NM, Sakkir N (2010) Buccal fat pad reconstruction for oral submucous fibrosis. Natl J Maxillofac Surg 1:164–167

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Gupta SK, Rana AS, Gupta D, Jain G, Kalra P (2010) Unusual causes of reduced mouth opening and it’s suitable surgical management: our experience. Natl J Maxillofac Surg 1:86–90

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Bari S, Metgud R, Vyas Z, Tak A (2017) An update on studies on etiological factors, disease progression, and malignant transformation in oral submucous fibrosis. J Cancer Res Ther 13:399–405

    PubMed  Google Scholar 

  5. 5.

    Chiu CJ, Chang ML, Chiang CP, Hahn LJ, Hsieh LL, Chen CJ (2002) Interaction of collagen-related genes and susceptibility to betel quid-induced oral submucous fibrosis. Cancer Epidemiol Biomarkers Prev 11:646–653

    CAS  PubMed  Google Scholar 

  6. 6.

    Cox SC, Walker DM (1996) Oral submucous fibrosis: a review. Aust Dent J 41:294–299

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Gupta PC, Warnakulasuriya S (2002) Global epidemiology of areca nut usage. Addict Biol 7:77–83

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Prabhu RV, Prabhu V, Chatra L, Shenai P, Suvarna N, Dandekeri S (2014) Areca nut and its role in oral submucous fibrosis. J Clin Exp Dent. 6:e569–e575

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Yang SF, Hsieh YS, Tsai CH, Chen YJ, Chang YC (2007) Increased plasminogen activator inhibitor-1/tissue type plasminogen activator ratio in oral submucous fibrosis. Oral Dis 13:234–238

    Article  PubMed  Google Scholar 

  10. 10.

    Khan I, Kumar N, Pant I, Narra S, Kondaiah P (2012) Activation of TGF-beta pathway by areca nut constituents: a possible cause of oral submucous fibrosis. PLoS ONE 7:e51806

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Ihn H (2002) Pathogenesis of fibrosis: role of TGF-beta and CTGF. Curr Opin Rheumatol 14:681–685

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Yuan H, Kaneko T, Matsuo M (1995) Relevance of oxidative stress to the limited replicative capacity of cultured human diploid cells: the limit of cumulative population doublings increases under low concentrations of oxygen and decreases in response to aminotriazole. Mech Ageing Devel 81:159–168

    CAS  Article  Google Scholar 

  13. 13.

    Gottipamula S, Saraswat SK, Sridhar KN (2017) Comparative study of isolation, expansion and characterization of epithelial cells. Cytotherapy 19:263–271

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Arakeri G, Rai KK, Hunasgi S, Merkx MAW, Gao S, Brennan PA (2017) Oral submucous fibrosis: an update on current theories of pathogenesis. J Oral Pathol Med 46:406–412

    Article  PubMed  Google Scholar 

  15. 15.

    Arakeri G, Rai KK, Boraks G, Patil SG, Aljabab AS, Merkx MAW et al (2017) Current protocols in the management of oral submucous fibrosis: an update. J Oral Pathol Med 46:418–423

    Article  PubMed  Google Scholar 

  16. 16.

    Chole RH, Gondivkar SM, Gadbail AR, Balsaraf S, Chaudhary S, Dhore SV et al (2012) Review of drug treatment of oral submucous fibrosis. Oral Oncol 48:393–398

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Pitiyage GN, Slijepcevic P, Gabrani A, Chianea YG, Lim KP, Prime SS et al (2011) Senescent mesenchymal cells accumulate in human fibrosis by a telomere-independent mechanism and ameliorate fibrosis through matrix metalloproteinases. J Pathol 223:604–617

    Article  PubMed  Google Scholar 

  18. 18.

    Mathew DG, Skariah KS, Ranganathan K (2011) Proliferative and morphologic characterization of buccal mucosal fibroblasts in areca nut chewers: a cell culture study. Indian J Dent Res 22:879

    Article  PubMed  Google Scholar 

  19. 19.

    Rehman A, Ali S, Lone MA, Atif M, Hassona Y, Prime SS et al (2016) Areca nut alkaloids induce irreparable DNA damage and senescence in fibroblasts and may create a favourable environment for tumour progression. J Oral Pathol Med 45:365–372

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Abrahams AC, Habib SM, Dendooven A, Riser BL, van der Veer JW, Toorop RJ et al (2014) Patients with encapsulating peritoneal sclerosis have increased peritoneal expression of connective tissue growth factor (CCN2), transforming growth factor-beta1, and vascular endothelial growth factor. PLoS ONE 9:e112050. https://doi.org/10.1371/journal.pone.0112050

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Li Y, Jian Z, Yang ZY, Chen L, Wang XF, Ma RY et al (2013) Increased expression of connective tissue growth factor and transforming growth factor-beta-1 in atrial myocardium of patients with chronic atrial fibrillation. Cardiology 124:233–240

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Meng YH, Tian C, Liu L, Wang L, Chang Q (2014) Elevated expression of connective tissue growth factor, osteopontin and increased collagen content in human ascending thoracic aortic aneurysms. Vascular. 22:20–27

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Mize TW, Sundararaj KP, Leite RS, Huang Y (2015) Increased and correlated expression of connective tissue growth factor and transforming growth factor beta 1 in surgically removed periodontal tissues with chronic periodontitis. J Periodontal Res 50:315–319

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Zhang P, Shi M, Wei Q, Wang K, Li X, Li H et al (2008) Increased expression of connective tissue growth factor in patients with urethral stricture. Tohoku J Exp Med 215:199–206

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Nath N, Saraswat SK, Jain S, Koteshwar S (2015) Inhibition of proliferation and migration of stricture fibroblasts by epithelial cell-conditioned media. Indian J Urol 31:111–115

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Gottipamula S, Ashwin K, Saraswat K, Sundarrajan S, Das M (2017) Co-culture of Buccal Mucosal Epithelial Cells Downregulate CTGF Expression in Urethral Stricture Fibroblasts. J Stem Cells Clin Pract 1:8–11

    Google Scholar 

  27. 27.

    Werner S, Krieg T, Smola H (2007) Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol 127:998–1008

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgement

SRTE is fully supported by Sri Sringeri Sharada Peetam.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. N Sridhar.

Ethics declarations

Conflict of interest

The author discloses no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gottipamula, S., Sundarrajan, S., Moorthy, A. et al. Buccal Mucosal Epithelial Cells Downregulate CTGF Expression in Buccal Submucosal Fibrosis Fibroblasts. J. Maxillofac. Oral Surg. 17, 254–259 (2018). https://doi.org/10.1007/s12663-017-1056-1

Download citation

Keywords

  • Buccal epithelial cells
  • Connective tissue growth factor
  • Fibroblasts
  • Oral submucosal fibrosis