Skip to main content

Is competitive swimming training a risk factor for osteoporosis? A systematic review of the literature and quality of evidence

Ist das Leistungsschwimmtraining ein Risikofaktor für Osteoporose? Ein systematischer Review der Literatur und Evidenzqualität

Abstract

Introduction

Due to the controversy regarding bone health in swimmers compared to weight-bearing athletes, the aim of this work was to comprehensively analyze the effect of swimming on bone mass, cortical geometry, and trabecular microarchitecture as well as to assess the methodological quality of the available evidence.

Methods

A systematic literature search was conducted on PubMed and Scopus following the PICOS (Participants, Interventions, Comparators, Outcome and Study) strategy and the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Forty-one studies were included and screened with Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies for determining their quality of evidence.

Results

Swimmers’ bone mass tended to be lower compared to athletes engaged in high-impact sports, but similar compared to moderate- and non-impact sports as well as non-athletes, independently of gender and anatomical region assessed. Swimmers’ cortical geometry and trabecular microarchitecture tended to be similar to that of both athletes, independently of their impact loading profile, and non-athletes. Results were, nevertheless, based on studies with only a poor to fair quality of evidence, with most of them displaying a serious risk of bias.

Conclusions

No high-quality evidence was found suggesting that swimmers could be a population at risk of developing osteopenia or osteoporosis later in life. There is no evidence that swimming negatively compromises bone mass accrual, cortical bone geometry, or trabecular microarchitecture.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

Cited Literature

  • (2004). Chapter 6: Determinants of Bone health. In Office of the Surgeon General (US) (Ed.), Bone health and osteoporosis: a report of the surgeon general. Rockville: Office of the Surgeon General (US).

  • Abrahin, O., Rodrigues, R. P., Marçal, A. C., Alves, E. A. C., Figueiredo, R. C., & de Sousa, E. C. (2016). Swimming and cycling do not cause positive effects on bone mineral density: A systematic review. Revista Brasileira de Reumatologia, 56(4), 345–351. https://doi.org/10.1016/j.rbre.2016.02.013.

    Article  PubMed  Google Scholar 

  • Adnan, M. W., Sedek, R., Mutalib, S. A., Kasim, Z. M., Kashim, M. I. A. M., Idris, F., & Yusof, A. (2019). Effects of swimming towards mental health in collegiate male adults. Malaysian Applied Biology Journal, 48(2), 141–148.

    Google Scholar 

  • Agostinete, R. R., Lynch, K. R., Gobbo, L. A., Lima, M. C., Ito, I. H., Luiz-de-Marco, R., et al. (2016). Basketball affects bone mineral density accrual in boys more than swimming and other impact sports: 9‑mo follow-up. Journal of Clinical Densitometry, 19(3), 375–381. https://doi.org/10.1016/j.jocd.2016.04.006.

    Article  PubMed  Google Scholar 

  • Agostinete, R. R., Duarte, J. P., Valente-Dos-Santos, J., Coelho, E. S. M. J., Tavares, O. M., Conde, J. M., et al. (2017a). Bone tissue, blood lipids and inflammatory profiles in adolescent male athletes from sports contrasting in mechanical load. PLoS ONE, 12(6), 1–18. https://doi.org/10.1371/journal.pone.0180357.

    CAS  Article  Google Scholar 

  • Agostinete, R. R., Maillane-Vanegas, S., Lynch, K. R., Turi-Lynch, B., Coelho-e-Silva, M. J., Campos, E. Z., et al. (2017b). The impact of training load on bone mineral density of adolescent swimmers: A structural equation modeling approach. Pediatric Exercise Science, 29(4), 520–528. https://doi.org/10.1123/pes.2017-0008.

    Article  PubMed  Google Scholar 

  • Akkawi, I., & Zmerly, H. (2018). Osteoporosis: Current concepts. Joints, 6(2), 122–127. https://doi.org/10.1055/s-0038-1660790.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Albuquerque, R. B., Geraldes, A. A. R., Rangoussis, B., Fonseca, F. S., Neto, D. C. N., & de Oliveira, A. C. C. (2020). Swimming and bone mineral density: A sport without osteogenic stimulation? Revista Brasileira de Medicina do Esporte, 26(2), 113–116. https://doi.org/10.1590/1517-869220202602216728.

    Article  Google Scholar 

  • Bellver, M., Del Rio, L., Jovell, E., Drobnic, F., & Trilla, A. (2019). Bone mineral density and bone mineral content among female elite athletes. Bone, 127, 393–400. https://doi.org/10.1016/j.bone.2019.06.030.

    CAS  Article  PubMed  Google Scholar 

  • Bouxsein, M. L., Eastell, R., Lui, L. Y., Wu, L. A., de Papp, A. E., Grauer, A., et al. (2019). Change in bone density and reduction in fracture risk: A meta-regression of published trials. Journal of Bone and Mineral Research, 34(4), 632–642. https://doi.org/10.1002/jbmr.3641.

    Article  PubMed  Google Scholar 

  • Carbuhn, A. F., Fernandez, T. E., Bragg, A. F., Green, J. S., & Crouse, S. F. (2010). Sport and training influence bone and body composition in women collegiate athletes. Journal of Strength and Conditioning Research, 24(7), 1710–1717. https://doi.org/10.1519/JSC.0b013e3181d09eb3.

    Article  PubMed  Google Scholar 

  • Chainok, P., Machado, L., de Jesus, K., Abraldes, J. A., Borgonovo-Santos, M., Fernandes, R. J., & Vilas-Boas, J. P. (2021). Backstroke to breaststroke turning performance in age-group swimmers: Hydrodynamic characteristics and pull-out strategy. International Journal of Environmental Research and Public Health, 18(1858), 1–10. https://doi.org/10.3390/ijerph18041858.

    Article  Google Scholar 

  • Cheng, L., Pohlabeln, H., Ahrens, W., Lauria, F., Veidebaum, T., Chadjigeorgiou, C., et al. (2020). Cross-sectional and longitudinal associations between physical activity, sedentary behaviour and bone stiffness index across weight status in European children and adolescents. International Journal of Behavioral Nutrition and Physical Activity, 17(54), 1–13. https://doi.org/10.1186/s12966-020-00956-1.

    Article  Google Scholar 

  • Compston, J. (2006). Bone quality: what is it and how is it measured? Arquivos Brasileiros de Endocrinologia & Metabologia, 50(4), 579–585.

    Article  Google Scholar 

  • Courteix, D., Lespessailles, E., Peres, S. L., Obert, P., Germain, P., & Benhamou, C. L. (1998). Effect of physical training on bone mineral density in prepubertal girls: A comparative study between impact-loading and non-impact-loading sports. Osteoporosis International, 8(2), 152–158. https://doi.org/10.1007/bf02672512.

    CAS  Article  PubMed  Google Scholar 

  • Creighton, D. L., Morgan, A. L., Boardley, D., & Brolinson, P. G. (2001). Weight-bearing exercise and markers of bone turnover in female athletes. Journal of Applied Physiology, 90(2), 565–570. https://doi.org/10.1152/jappl.2001.90.2.565.

    CAS  Article  PubMed  Google Scholar 

  • Derman, O., Cinemre, A., Kanbur, N., Dogan, M., Kilic, M., & Karaduman, E. (2008). Effect of swimming on bone metabolism in adolescents. Turkish Journal of Pediatrics, 50(2), 149–154.

    PubMed  Google Scholar 

  • Dias Quiterio, A. L., Carnero, E. A., Baptista, F. M., & Sardinha, L. B. (2011). Skeletal mass in adolescent male athletes and nonathletes: Relationships with high-impact sports. Journal of Strength and Conditioning Research, 25(12), 3439–3447.

    Article  Google Scholar 

  • Dlugolecka, B., Czeczelewski, J., & Raczynska, B. (2011). Bone mineral content and bone mineral density in female swimmers during the time of peak bone mass attainment. Biology of Sport, 28, 69–74. https://doi.org/10.5604/935874.

    Article  Google Scholar 

  • Duncan, C. S., Blimkie, C. J., Cowell, C. T., Burke, S. T., Briody, J. N., & Howman-Giles, R. (2002). Bone mineral density in adolescent female athletes: Relationship to exercise type and muscle strength. Medicine and Science in Sports and Exercise, 34(2), 286–294. https://doi.org/10.1097/00005768-200202000-00017.

    Article  PubMed  Google Scholar 

  • Emslander, H. C., Sinaki, M., Muhs, J. M., Chao, E. Y., Wahner, H. W., Bryant, S. C., et al. (1998). Bone mass and muscle strength in female college athletes (runners and swimmers). Mayo Clinic Proceedings, 73(12), 1151–1160. https://doi.org/10.4065/73.12.1151.

    CAS  Article  PubMed  Google Scholar 

  • Fehling, P. C., Alekel, L., Clasey, J., Rector, A., & Stillman, R. J. (1995). A comparison of bone mineral densities among female athletes in impact loading and active loading sports. Bone, 17(3), 205–210. https://doi.org/10.1016/8756-3282(95)00171-9.

    CAS  Article  PubMed  Google Scholar 

  • Ferry, B., Duclos, M., Burt, L., Therre, P., Le Gall, F., Jaffre, C., & Courteix, D. (2011). Bone geometry and strength adaptations to physical constraints inherent in different sports: Comparison between elite female soccer players and swimmers. Journal of Bone and Mineral Metabolism, 29(3), 342–351. https://doi.org/10.1007/s00774-010-0226-8.

    Article  PubMed  Google Scholar 

  • Ferry, B., Lespessailles, E., Rochcongar, P., Duclos, M., & Courteix, D. (2013). Bone health during late adolescence: Effects of an 8‑month training program on bone geometry in female athletes. Joint Bone Spine, 80(1), 57–63. https://doi.org/10.1016/j.jbspin.2012.01.006.

    Article  PubMed  Google Scholar 

  • Fonseca, H., Moreira-Goncalves, D., Coriolano, H. J., & Duarte, J. A. (2014). Bone quality: The determinants of bone strength and fragility. Sports Medicine, 44(1), 37–53. https://doi.org/10.1007/s40279-013-0100-7.

    Article  PubMed  Google Scholar 

  • Gomez-Bruton, A., Gonzalez-Aguero, A., Gomez-Cabello, A., Casajus, J. A., & Vicente-Rodriguez, G. (2013). Is bone tissue really affected by swimming? A systematic review. PLoS ONE, 8(e70119), 1–25. https://doi.org/10.1371/journal.pone.0070119.

    CAS  Article  Google Scholar 

  • Gomez-Bruton, A., Gonzalez-Aguero, A., Gomez-Cabello, A., Matute-Llorente, A., Casajus, J. A., & Vicente-Rodriguez, G. (2014). The effects of swimming training on bone tissue in adolescence. Scandinavian journal of medicine & science in sports, 25(6), 589–602. https://doi.org/10.1111/sms.12378.

    Article  Google Scholar 

  • Gomez-Bruton, A., Montero-Marin, J., Gonzalez-Aguero, A., Garcia-Campayo, J., Moreno, L. A., Casajus, J. A., & Vicente-Rodriguez, G. (2016). The effect of swimming during childhood and adolescence on bone mineral density: A systematic review and meta-analysis. Sports Medicine, 46(3), 365–379. https://doi.org/10.1007/s40279-015-0427-3.

    Article  PubMed  Google Scholar 

  • Gomez-Bruton, A., Matute-Llorente, A., Gonzalez-Aguero, A., Casajus, J. A., & Vicente-Rodriguez, G. (2017a). Plyometric exercise and bone health in children and adolescents: A systematic review. World Journal of Pediatrics, 13(2), 112–121. https://doi.org/10.1007/s12519-016-0076-0.

    Article  PubMed  Google Scholar 

  • Gomez-Bruton, A., Montero-Marin, J., Gonzalez-Aguero, A., Gomez-Cabello, A., Garcia-Campayo, J., Moreno, L. A., et al. (2017b). Swimming and peak bone mineral density: A systematic review and meta-analysis. Journal of Sports Sciences, 36(4), 365–377. https://doi.org/10.1080/02640414.2017.1307440.

    Article  PubMed  Google Scholar 

  • Gomez-Bruton, A., Gonzalez-Aguero, A., Matute-Llorente, A., Lozano-Berges, G., Gomez-Cabello, A., Moreno, L. A., et al. (2019). The muscle-bone unit in adolescent swimmers. Osteoporosis International, 30(5), 1079–1088. https://doi.org/10.1007/s00198-019-04857-3.

    CAS  Article  PubMed  Google Scholar 

  • Gruodyte, R., Jurimae, J., Saar, M., & Jurimae, T. (2010). The relationships among bone health, insulin-like growth factor‑1 and sex hormones in adolescent female athletes. Journal of Bone and Mineral Metabolism, 28(3), 306–313. https://doi.org/10.1007/s00774-009-0130-2.

    CAS  Article  PubMed  Google Scholar 

  • Harding, A. T., & Beck, B. R. (2017). Exercise, osteoporosis, and bone geometry. Sports (Basel, Switzerland), 5(29), 1–14. https://doi.org/10.3390/sports5020029.

    Article  Google Scholar 

  • Hart, N. H., Nimphius, S., Rantalainen, T., Ireland, A., Siafarikas, A., & Newton, R. U. (2017). Mechanical basis of bone strength: Influence of bone material, bone structure and muscle action. Journal of musculoskeletal & neuronal interactions, 17(3), 114–139.

    CAS  Google Scholar 

  • Heinio, L., Nikander, R., & Sievanen, H. (2015). Association between long-term exercise loading and lumbar spine trabecular bone score (TBS) in different exercise loading groups. Journal of Musculoskeletal and Neuronal Interactions, 15(3), 279–285.

    CAS  Google Scholar 

  • Hind, K., Gannon, L., Whatley, E., Cooke, C., & Truscott, J. (2012). Bone cross-sectional geometry in male runners, gymnasts, swimmers and non-athletic controls: a hip-structural analysis study. European Journal of Applied Physiology, 112(2), 535–541. https://doi.org/10.1007/s00421-011-2008-y.

    Article  PubMed  Google Scholar 

  • Jeon, W., Harrison, J. M., Stanforth, P. R., & Griffin, L. (2021). Bone mineral density differences across female olympic lifters, power lifters, and soccer players. The Journal of Strength & Conditioning Research, 35(3), 638–643.

    Article  Google Scholar 

  • Karpinski, J., Rejdych, W., Brzozowska, D., Golas, A., Sadowski, W., Swinarew, A. S., et al. (2020). The effects of a 6-week core exercises on swimming performance of national level swimmers. PLoS ONE, 15(8), 1–12. https://doi.org/10.1371/journal.pone.0227394.

    CAS  Article  Google Scholar 

  • Lee, E. J., Long, K. A., Risser, W. L., Poindexter, H. B., Gibbons, W. E., & Goldzieher, J. (1995). Variations in bone status of contralateral and regional sites in young athletic women. Medicine & Science in Sports & Exercise, 27(10), 1354–1361. https://doi.org/10.1249/00005768-199510000-00002.

    CAS  Article  Google Scholar 

  • Lee, B.-A., & Oh, D.-J. (2015). Effect of regular swimming exercise on the physical composition, strength, and blood lipid of middle-aged women. Journal of Exercise Rehabilitation, 11(5), 266–271. https://doi.org/10.12965/jer.150242.

    Article  PubMed  PubMed Central  Google Scholar 

  • Magkos, F., Kavouras, S. A., Yannakoulia, M., Karipidou, M., Sidossi, S., & Sidossis, L. S. (2007a). The bone response to non-weight-bearing exercise is sport-, site-, and sex-specific. Clinical Journal of Sport Medicine, 17(2), 123–128. https://doi.org/10.1097/JSM.0b013e318032129d.

    Article  PubMed  Google Scholar 

  • Magkos, F., Yannakoulia, M., Kavouras, S.A., & Sidossis, L.S (2007b). The type and intensity of exercise have independent and additive effects on bone mineral density. Int J Sports Med, 8(9), 773–779. https://doi.org/10.1055/s-2007-964979.

    Article  Google Scholar 

  • Maillane-Vanegas, S., Agostinete, R. R., Lynch, K. R., Ito, I. H., Luiz-de-Marco, R., Rodrigues-Junior, M. A., et al. (2020). Bone mineral density and sports participation. Journal of Clinical Densitometry, 23(2), 294–302. https://doi.org/10.1016/j.jocd.2018.05.041.

    Article  PubMed  Google Scholar 

  • Maimoun, L., Lumbroso, S., Manetta, J., Paris, F., Leroux, J. L., & Sultan, C. (2003). Testosterone is significantly reduced in endurance athletes without impact on bone mineral density. Hormone Research in Paediatrics, 59(6), 285–292. https://doi.org/10.1159/000070627.

    CAS  Article  Google Scholar 

  • Maimoun, L., Coste, O., Philibert, P., Briot, K., Mura, T., Galtier, F., et al. (2013a). Testosterone secretion in elite adolescent swimmers does not modify bone mass acquisition: A 1‑year follow-up study. Fertility and Sterility, 99(1), 270–278. https://doi.org/10.1016/j.fertnstert.2012.08.020.

    CAS  Article  PubMed  Google Scholar 

  • Maimoun, L., Coste, O., Philibert, P., Briot, K., Mura, T., Galtier, F., et al. (2013b). Peripubertal female athletes in high-impact sports show improved bone mass acquisition and bone geometry. Metabolism, 62(8), 1088–1098. https://doi.org/10.1016/j.metabol.2012.11.010.

    CAS  Article  PubMed  Google Scholar 

  • Matsumoto, T., Nakagawa, S., Nishida, S., & Hirota, R. (1997). Bone density and bone metabolic markers in active collegiate athletes: Findings in long-distance runners, judoists, and swimmers. International Journal of Sports Medicine, 18(6), 408–412. https://doi.org/10.1055/s-2007-972656.

    Article  Google Scholar 

  • Miller, M., Kojetin, S., & Scibora, L. (2020). Site-specific effects of swimming on bone density in female collegiate swimmers. International journal of exercise science, 13(1), 249–259.

    PubMed  PubMed Central  Google Scholar 

  • Morgan, A., & Weiss, J. J. (2011). Markers of bone turnover across a competitive season in female athletes: A preliminary investigation. The Journal of Sports Medicine and Physical Fitness, 51(3), 515–524.

    CAS  PubMed  Google Scholar 

  • NIH (2014). Quality assessment tool for observational cohort and cross-sectional studies

    Google Scholar 

  • Nikander, R., Sievanen, H., Heinonen, A., & Kannus, P. (2005). Femoral neck structure in adult female athletes subjected to different loading modalities. Journal of Bone and Mineral Research, 20(3), 520–528. https://doi.org/10.1359/jbmr.041119.

    Article  PubMed  Google Scholar 

  • Nikander, R., Sievanen, H., Uusi-Rasi, K., Heinonen, A., & Kannus, P. (2006). Loading modalities and bone structures at nonweight-bearing upper extremity and weight-bearing lower extremity: A pQCT study of adult female athletes. Bone, 39(4), 886–894. https://doi.org/10.1016/j.bone.2006.04.005.

    Article  PubMed  Google Scholar 

  • Nikander, R., Sievänen, H., Heinonen, A., Daly, R. M., Uusi-Rasi, K., & Kannus, P. (2010). Targeted exercise against osteoporosis: A systematic review and meta-analysis for optimising bone strength throughout life. BMC Medicine, 8(47), 1–16. https://doi.org/10.1186/1741-7015-8-47.

    Article  Google Scholar 

  • Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. (2021). PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ (Clinical Research Ed.), 372, n160. https://doi.org/10.1136/bmj.n160.

    Article  Google Scholar 

  • Pang, Q., Xu, Y., Huang, L., Li, Y., Lin, Y., Hou, Y., Hung, V.H., Qi, X., Ni, X., Li, M., Jiang, Y., Wang, O., Xing, X., Qin, L., Xia, W. (2021). Bone geometry, density, microstructure, and biomechanical properties in the distal tibia in patients with primary hypertrophic osteoarthropathy assessed by second-generation high-resolution peripheral quantitative computed tomography. Journal of Bone and Mineral Research. https://doi.org/10.1002/jbmr.4488

    Article  PubMed  Google Scholar 

  • Portier, H., Benaitreau, D., & Pallu, S. (2020). Does physical exercise always improve bone quality in rats? Life (Basel), 10(10), 1–34. https://doi.org/10.3390/life10100217.

    Article  Google Scholar 

  • Ribeiro-Dos-Santos, M. R., Lynch, K. R., Agostinete, R. R., Maillane-Vanegas, S., Turi-Lynch, B., Ito, I. H., et al. (2016). Prolonged practice of swimming is negatively related to bone mineral density gains in adolescents. Journal of Bone Metabolism, 23(3), 149–155. https://doi.org/10.11005/jbm.2016.23.3.149.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sammoud, S., Negra, Y., Chaabene, H., Bouguezzi, R., Moran, J., & Granacher, U. (2019). The effects of plyometric jump training on jumping and swimming performances in prepubertal male swimmers. Journal of sports science & medicine, 18(4), 805–811.

    Google Scholar 

  • Santos, L., Elliott-Sale, K. J., & Sale, C. (2017). Exercise and bone health across the lifespan. Biogerontology, 18(6), 931–946. https://doi.org/10.1007/s10522-017-9732-6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Schünemann, H., Brożek, J., Guyatt, G., & Oxman, A. (2013). Handbook for grading the quality of evidence and the strength of recommendations using the GRADE approach. Updated October 2013

    Google Scholar 

  • Seabra, A., Fernandes, R. J., Marques, E., Moura, M., Ubago-Guisado, E., Hernando, E., & Gallardo, L. (2017). Impact of futsal and swimming participation on bone health in young athletes. Journal of Human Kinetics, 60, 85–91. https://doi.org/10.1515/hukin-2017-0092.

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva, C. C., Goldberg, T. B., Teixeira, A. S., & Dalmas, J. C. (2011). The impact of different types of physical activity on total and regional bone mineral density in young brazilian athletes. Journal of Sports Sciences, 29(3), 227–234. https://doi.org/10.1080/02640414.2010.529456.

    Article  PubMed  Google Scholar 

  • Simões, D., Craveiro, V., Santos, M. P., Camões, M., Pires, B., & Ramos, E. (2021). The effect of impact exercise on bone mineral density: A longitudinal study on non-athlete adolescents. Bone, 153(116151), 1–6.

    Google Scholar 

  • Sterne, J. A., Hernan, M. A., Reeves, B. C., Savović, J., Berkman, N. D., Viswanathan, M., et al. (2016). ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ (Clinical Research Ed.), 355, i4919. https://doi.org/10.1136/bmj.i4919.

    Article  Google Scholar 

  • The International Society for Clinical Densitometry (2019). 2019 ISCD Official positions pediatric. ISCD Board

    Google Scholar 

  • Ubago-Guisado, E., Vlachopoulos, D., Fatouros, I. G., Deli, C. K., Leontsini, D., Moreno, L. A., et al. (2018). Longitudinal determinants of 12-month changes on bone health in adolescent male athletes. Archives of Osteoporosis, 13(1), 106. https://doi.org/10.1007/s11657-018-0519-4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Valente-Dos-Santos, J., Tavares, O. M., Duarte, J. P., Sousa, E. S. P. M., Rama, L. M., Casanova, J. M., et al. (2018). Total and regional bone mineral and tissue composition in female adolescent athletes: comparison between volleyball players and swimmers. BMC Pediatrics, 18(1), 212. https://doi.org/10.1186/s12887-018-1182-z.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vantorre, J., Seifert, L., Fernandes, R. J., Vilas-Boas, J. P., & Chollet, D. (2010). Kinematical profiling of the front crawl start. International Journal of Sports Medicine, 31(1), 16–21. https://doi.org/10.1055/s-0029-1241208.

    CAS  Article  PubMed  Google Scholar 

  • Vlachopoulos, D., Barker, A. R., Ubago-Guisado, E., Fatouros, I. G., Knapp, K. M., Williams, C. A., & Gracia-Marco, L. (2017a). Longitudinal adaptations of bone mass, geometry, and metabolism in adolescent male athletes: The PRO-BONE Study. Journal of Bone and Mineral Research, 32(11), 2269–2277. https://doi.org/10.1002/jbmr.3206.

    CAS  Article  PubMed  Google Scholar 

  • Vlachopoulos, D., Barker, A. R., Williams, C. A., et al. (2017b). The impact of sport participation on bone mass and geometry in male adolescents. Medicine and science in sports and exercise, 49(2), 317–326. https://doi.org/10.1249/mss.0000000000001091.

    Article  PubMed  Google Scholar 

  • Wang, F., & Li, S. S. (2019). Research on the influence mechanism of winter swimming exercise on the cardiovascular system in the middle-aged and elderly. Matrix Science Pharma, 3(1), 12–15. https://doi.org/10.4103/MTSP.MTSP_4_19.

    Article  Google Scholar 

  • Wang, Q., Cheng, S., Alen, M., & Seeman, E. (2009). Bone’s structural diversity in adult females is established before puberty. Journal of Clinical Endocrinology and Metabolism, 94(5), 1555–1561.

    CAS  Article  Google Scholar 

  • Whittier, D. E., Boyd, S. K., Burghardt, A. J., Paccou, J., Ghasem-Zadeh, A., Chapurlat, R., Engelke, K., Bouxsein, M. L. (2020). Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporos Int, 31(9), 1607–1627. https://doi.org/10.1007/s00198-020-05438-5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Further Reading

Download references

Funding

The Research Center in Physical Activity, Health and Leisure (CIAFEL) and the Laboratory for Integrative and Translational Research in Population Health (ITR) are funded by the Fundação para a Ciência e Tecnologia (FCT) through grants FCT UID/DTP/00617/2020 and LA/P/0064/2020, respectively. The first author is supported by an FCT PhD grant (SFRH/BD/145211/2019).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Laura Freitas, Andrea Bezerra, Tânia Amorim, Ricardo Jorge Fernandes, José Duarte and Hélder Fonseca.; literature search: Laura Freitas; Andrea Bezerra; data analysis, Laura Freitas, Andrea Bezerra and Hélder Fonseca; writing—original draft preparation, Laura Freitas; writing—review and editing: Laura Freitas, Andrea Bezerra, Tânia Amorim, Ricardo Jorge Fernandes, José Duarte and Hélder Fonseca; supervision: Tânia Amorim, Ricardo Jorge Fernandes, José Duarte and Hélder Fonseca; funding acquisition: Laura Freitas and Hélder Fonseca. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Laura Freitas.

Ethics declarations

Conflict of interest

L. Freitas, A. Bezerra, T. Amorim, R.J. Fernandes, J. Duarte and H. Fonseca declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.

Additional information

Availability of data and material (data transparency)

All data and material are real and available if requested.

Code availability (software application or custom code)

Not applicable

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Freitas, L., Bezerra, A., Amorim, T. et al. Is competitive swimming training a risk factor for osteoporosis? A systematic review of the literature and quality of evidence. Ger J Exerc Sport Res (2022). https://doi.org/10.1007/s12662-022-00849-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12662-022-00849-4

Keywords

  • Bone health
  • Bone mineral density
  • Low BMD
  • Hypogravity environment
  • Non-weight bearing exercise