Skip to main content

Relationship of executive functions and physical abilities in elite soccer players

Beziehung zwischen exekutiven Funktionen und physiologischen Fähigkeiten in Elite-Fußballern

Abstract

Objectives

This study investigated the relationship of executive functions and physical abilities in youth and adult elite soccer players.

Design and methods

In all, 172 elite soccer players (12–34 years of age) performed a computer-based test battery assessing multiple-object tracking, working memory capacity, cognitive flexibility, and inhibition. Another series of tests measured endurance-performance at the individual anaerobic threshold (IAT), ability to repeatedly perform intense exercises (RIEA), and maximal anaerobic performance parameters (squat jump, counter movement jump, drop jump quotient, sprint time).

Results

Executive functions and maximal anaerobic parameters showed small to moderate correlations for example, working memory capacity and cognitive flexibility with sprint, countermovement- and drop jump along with a correlation of inhibition and RIEA.

Conclusion

These findings favor specific motor–cognition associations rather than a one-fits-all association. Specifically, sprint and jump seem to be more closely linked to cognitive skills than endurance parameters and represent fundamental associations across several age groups.

This is a preview of subscription content, access via your institution.

References

  1. Abade, E. A., Gonçalves, B. V., Silva, A. M., Leite, N. M., Castagna, C., & Sampaio, J. E. (2014). Classifying young soccer players by training performances. Perceptual and Motor Skills, 119(3), 971–984. https://doi.org/10.2466/10.25.PMS.119c31z8.

    Article  PubMed  Google Scholar 

  2. Aksum, K. M., Pokolm, M., Bjørndal, C. T., Rein, R., Memmert, D. & Jordet, G. (2021) Scanning activity in elite youth football players. Journal of Sports Sciences.

  3. Bangsbo, J., Iaia, F. M., & Krustrup, P. (2008). The YoYo intermittent recovery test. Sports Medicine, 38(1), 37–51.

    Article  Google Scholar 

  4. Beavan, A., Chin, V., Ryan, L. M., Spielmann, J., Mayer, J., Skorski, S., Meyer, T., & Fransen, J. (2020a). A longitudinal analysis of the executive functions in high-level soccer players. Journal of Sport and Exercise Psychology, 42(5), 349–357. https://doi.org/10.1123/JSEP.2019-0312.

    Article  Google Scholar 

  5. Beavan, A., Spielmann, J., Mayer, J., Skorski, S., Meyer, T., & Fransen, J. (2020b). The rise and fall of executive functions in high-level football players. Psychology of Sport and Exercise, 49, 101677. https://doi.org/10.1016/j.psychsport.2020.101677.

    Article  Google Scholar 

  6. Bezodis, N. E., Willwacher, S., & Salo, A. I. T. (2019). The biomechanics of the track and field sprint start: a narrative review. Sports Medicine, 49(9), 1345–1364. https://doi.org/10.1007/s40279-019-01138-1.

    Article  PubMed  Google Scholar 

  7. Blanchfield, A. W., Hardy, J., De Morree, H. M., Staiano, W., & Marcora, S. M. (2014). Talking yourself out of exhaustion: the effects of self-talk on endurance performance. Medicine and Science in Sports and Exercise, 46(5), 998–1007. https://doi.org/10.1249/MSS.0000000000000184.

    Article  PubMed  Google Scholar 

  8. Buchheit, M. (2014). Monitoring training status with HR measures: Do all roads lead to Rome? Frontiers in Physiology. https://doi.org/10.3389/fphys.2014.00073.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cambridge Cognition. (2019, October). Neuroscience Technology Products. https://www.cambridgecognition.com/products.

  10. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd edn.). Hillsdale: Erlbaum.

    Google Scholar 

  11. Constantinidis, C., & Klingberg, T. (2016). The neuroscience of working memory capacity and training. Nature. https://doi.org/10.1038/nrn.2016.43.

    Article  Google Scholar 

  12. Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, D., & Engle, R. W. (2005). Working memory span tasks: a methodological review and user’s guide. Psychonomic Bulletin & Review, 12, 769–786. https://doi.org/10.3758/BF03196772.

    Article  Google Scholar 

  13. Crowe, S. F. (1998). The differential contribution of mental tracking, cognitive flexibility, visual search, and motor speed to performance on parts A and B of the Trail Making Test. Journal of Clinical Psychology, 54(5), 585–591. https://doi.org/10.1002/(sici)1097-4679(199808)54:5.

    CAS  Article  Google Scholar 

  14. Cumming, G. (2014). The new statistics: why and how. Psychological Science, 25(1), 7–29. https://doi.org/10.1177/0956797613504966.

    Article  PubMed  Google Scholar 

  15. Darki, F., & Klingberg, T. (2015). The role of fronto-parietal and fronto-striatal networks in the development of working memory: a longitudinal study. Cerebral Cortex, 25(6), 1587–1595. https://doi.org/10.1093/cercor/bht352.

    Article  PubMed  Google Scholar 

  16. De Luca, C. R., Wood, S. J., Anderson, V., Buchanan, J. A., Proffitt, T. M., Mahony, K., et al. (2003). Normative data from the CANTAB. I: development of executive function over the lifespan. Journal of Clinical and Experimental Neuropsychology, 25, 242–254. https://doi.org/10.1076/jcen.25.2.242.13639.

    Article  PubMed  Google Scholar 

  17. Delbaere, K., & Lord, S. (2015). Validation of a trail-making test developed for iPad. https://www.neura.edu.au/wp-content/uploads/2016/05/Trails-iPad_validation.pdf. Accessed 7 May 2020.

  18. Deprez, D., Coutts, A. J., Lenoir, M., Fransen, J., Pion, J., Philippaerts, R., & Vaeyens, R. (2014). Reliability and validity of the Yo-Yo intermittent recovery test level 1 in young soccer players. Journal of Sports Sciences, 32(10), 903–910. https://doi.org/10.1080/02640414.2013.876088.

    Article  PubMed  Google Scholar 

  19. Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. https://doi.org/10.1007/978-3-319-42662-4_9.

    Article  PubMed  Google Scholar 

  20. Dietrich, A. (2006). Transient hypofrontality as a mechanism for the psychological effects of exercise. Psychiatry Research, 145(1), 79–83. https://doi.org/10.1016/j.psychres.2005.07.033.

    Article  PubMed  Google Scholar 

  21. Faubert, J. (2013). Professional athletes have extraordinary skills for rapidly learning complex and neutral dynamic visual scenes. Scientific Reports. https://doi.org/10.1038/srep01154.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Faude, O., Steffen, A., Kellmann, M., & Meyer, T. (2014). The effect of short-term interval training during the competitive season on physical fitness and signs of fatigue: a crossover trial in high-level youth football players. International Journal of Sports Physiology and Performance, 9(6), 936–944. https://doi.org/10.1123/ijspp.2013-0429.

    Article  PubMed  Google Scholar 

  23. Fields, R. D. (2015). A new mechanism of nervous system plasticity: activity-dependent myelination. Nature Reviews Neuroscience, 16(12), 756–767. https://doi.org/10.1038/nrn4023.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. FIFA (2013). FIFA Communications Division, Information Services.

  25. Fogel, A., McCrickerd, K., Goh, A. T., Fries, L. R., Chong, Y. S., Tan, K. H., Forde, C. G., et al. (2019). Associations between inhibitory control, eating behaviours and adiposity in 6‑year-old children. International Journal of Obesity, 43(7), 1344–1353. https://doi.org/10.1038/s41366-019-0343-y.

    Article  PubMed  Google Scholar 

  26. Ford, P., de Ste Croix, M., Lloyd, R., Meyers, R., Moosavi, M., Oliver, J., Till, K., & Williams, C. (2011). The long-term athlete development model: physiological evidence and application. Journal of Sports Sciences, 29(4), 389–402. https://doi.org/10.1080/02640414.2010.536849.

    Article  PubMed  Google Scholar 

  27. Gao, Z., Davis, C., Thomas, A. M., Economo, M. N., Abrego, A. M., Svoboda, K., Li, N., et al. (2018). A cortico-cerebellar loop for motor planning. Nature, 563(7729), 113–116. https://doi.org/10.1038/s41586-018-0633-x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Gottwald, J. M., Achermann, S., Marciszko, C., Lindskog, M., & Gredebäck, G. (2016). An embodied account of early executive-function development: prospective motor control in infancy is related to inhibition and working memory. Psychological Science, 27(12), 1600–1610. https://doi.org/10.1177/0956797616667447.

    Article  PubMed  Google Scholar 

  29. Guerrero-Calderón, B., Klemp, M., Castillo-Rodriguez, A., Morcillo, J. A., & Memmert, D. (2021). A New Approach for Training-load Quantification in Elite-level Soccer: Contextual Factors. International Journal of Sports Medicine, 42(8), 716–723. https://doi.org/10.1055/a-1289-9059.

    Article  PubMed  Google Scholar 

  30. Hanakawa, T. (2011). Rostral premotor cortex as a gateway between motor and cognitive networks. Neuroscience Research, 70(2), 144–154. https://doi.org/10.1016/J.NEURES.2011.02.010.

    Article  PubMed  Google Scholar 

  31. Huang, Z., Davis, H., Wolff, A., & Northoff, G. (2017). Thalamo-sensorimotor functional connectivity correlates with world ranking of olympic, elite, and high performance athletes. Neural Plasticity. https://doi.org/10.1155/2017/1473783.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Huijgen, B. C. H., Leemhuis, S., Kok, N. M., Verburgh, L., Oosterlaan, J., Elferink-Gemser, M. T., & Visscher, C. (2015). Cognitive functions in elite and sub-elite youth soccer players aged 13 to 17 years. PloS ONE, 10(12), 1–13. https://doi.org/10.1371/journal.pone.0144580.

    CAS  Article  Google Scholar 

  33. Jansen, P., & Heil, M. (2010). The relation between motor development and mental rotation ability in 5‑ to 6‑year-old children. International Journal of Developmental Sciences, 4(1), 6775. https://doi.org/10.3233/DEV-2010-4105.

    Article  Google Scholar 

  34. Jamil, M., Liu, H., Phatak, A., & Memmert, D. (2021). An investigation identifying which key performance indicators influence the chances of promotion to the elite leagues in professional European football. International Journal of Performance Analysis in Sport, 21(4), 641–650. https://doi.org/10.1080/24748668.2021.1933845.

    Article  Google Scholar 

  35. Kane, M., Hambrick, Z., Stephen W., Tuholski, O., Tabitha, W., Payne, T.W., & Engle, R. (2004) The generality of working memory capacity: a latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133(2), 189–217. https://doi.org/10.1037/0096-3445.133.2.189.

    Article  Google Scholar 

  36. Klemp, M., Memmert, D., & Rein, R. (2021). The influence of running performance on scoring the first goal in a soccer match. International Journal of Sports Science and Coaching. https://doi.org/10.1177/17479541211035382.

    Article  Google Scholar 

  37. Köklü, Y., Alemdaroğlu, U., Özkan, A., Koz, M., & Ersöz, G. (2015). The relationship between sprint ability, agility and vertical jump performance in young soccer players. Science and Sports, 30(1), e1–e5. https://doi.org/10.1016/j.scispo.2013.04.006.

    Article  Google Scholar 

  38. Krustrup, P., Mohr, M., Amstrup, T., Rysgaard, T., Johansen, J., Steensberg, A., Bangsbo, J., et al. (2003). The Yo-Yo intermittent recovery test: physiological response, reliability, and validity. Medicine and Science in Sports and Exercise, 35(4), 697–705. https://doi.org/10.1249/01.MSS.0000058441.94520.32.

    Article  PubMed  Google Scholar 

  39. Lehmann, J., Quaiser-Pohl, C., & Jansen, P. (2014). Correlation of motor skill, mental rotation, and working memory in 3‑ to 6‑year-old children. European Journal of Developmental Psychology, 11(5), 560–573. https://doi.org/10.1080/17405629.2014.888995.

    Article  Google Scholar 

  40. Leisman, G., Moustafa, A. A., & Shafir, T. (2016). Thinking, walking, talking: integratory motor and cognitive brain function. Frontiers in Public Health. https://doi.org/10.3389/fpubh.2016.00094.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Low, B., Rein, R., Raabe, D., Schwab, S., & Memmert, D. (2021). The porous high-press? An experimental approach investigating tactical behaviours from two pressing strategies in football. Journal of Sports Sciences. https://doi.org/10.1080/02640414.2021.1925424.

    Article  PubMed  Google Scholar 

  42. Luciana, M., Conklin, H. M., Hooper, C. J., & Yarger, R. S. (2005). The development of nonverbal working memory and executive control processes in adolescents. Child Development, 76, 697–712. https://doi.org/10.1111/j.1467-8624.2005.00872.x.

    Article  PubMed  Google Scholar 

  43. Ludyga, S., Gerber, M., Pühse, U., Looser, V. N., & Kamijo, K. (2020). Systematic review and meta-analysis investigating moderators of long-term effects of exercise on cognition in healthy individuals. Nature Human Behaviour, 4(6), 603–612. https://doi.org/10.1038/s41562-020-0851-8.

    Article  PubMed  Google Scholar 

  44. Malone, S., Owen, A., Mendes, B., Hughes, B., Collins, K., & Gabbett, T. J. (2018). High-speed running and sprinting as an injury risk factor in soccer: Can well-developed physical qualities reduce the risk? Journal of Science and Medicine in Sport, 21(3), 257–262. https://doi.org/10.1016/j.jsams.2017.05.016.

    Article  PubMed  Google Scholar 

  45. Malone, S., Hughes, B., Doran, D. A., Collins, K., & Gabbett, T. J. (2019). Can the workload–injury relationship be moderated by improved strength, speed and repeated-sprint qualities? Journal of Science and Medicine in Sport, 22(1), 29–34. https://doi.org/10.1016/j.jsams.2018.01.010.

    Article  PubMed  Google Scholar 

  46. Martin, K., Staiano, W., Menaspà, P., Hennessey, T., Marcora, S., Keegan, R., Thompson, K. G., Martin, D., Halson, S., & Rattray, B. (2016). Superior inhibitory control and resistance to mental fatigue in professional road cyclists. PLoS ONE, 11(7), 159907. https://doi.org/10.1371/journal.pone.0159907.

    CAS  Article  Google Scholar 

  47. Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: four general conclusions. Current Directions in Psychological Science, 21(1), 8–14. https://doi.org/10.1177/0963721411429458.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cognitive Psychology, 41(1), 49–100. https://doi.org/10.1006/cogp.1999.0734.

    CAS  Article  PubMed  Google Scholar 

  49. Murr, D., Feichtinger, P., Larkin, P., O’Connor, D., & Höner, O. (2018a). Psychological talent predictors in youth soccer: a systematic review of the prognostic relevance of psychomotor, perceptual-cognitive and personality-related factors. PLoS ONE. https://doi.org/10.1371/journal.pone.0205337.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Murr, D., Raabe, J., & Höner, O. (2018b). The prognostic value of physiological and physical characteristics in youth soccer: a systematic review. European Journal of Sport Science, 18(1), 62–74. https://doi.org/10.1080/17461391.2017.1386719.

    Article  PubMed  Google Scholar 

  51. Ptak, R., Schnider, A., & Fellrath, J. (2017). The DoRIEAl frontoparietal network: a core system for emulated action. Trends in Cognitive Sciences, 21(8), 589–599. https://doi.org/10.1016/j.tics.2017.05.002.

    Article  PubMed  Google Scholar 

  52. Roca, A., Ford, P. R., & Memmert, D. (2021). Perceptual-cognitive processes underlying creative expert performance in soccer. Psychological Research, 85(3), 1146–1155. https://doi.org/10.1007/s00426-020-01320-5.

    Article  PubMed  Google Scholar 

  53. Romeas, T., Guldner, A., & Faubert, J. (2016) 3D-Multiple Object Tracking training task improves passing decision-making accuracy in soccer players. Psychology of Sport and Exercise, 22, 1–9. https://doi.org/10.1016/j.psychsport.2015.06.002.

    Article  Google Scholar 

  54. Scharfen, H. E., & Memmert, D. (2019a). Measurement of cognitive functions in experts and elite athletes: a meta-analytic review. Applied Cognitive Psychology. https://doi.org/10.1002/acp.3526.

    Article  Google Scholar 

  55. Scharfen, H.-E., & Memmert, D. (2019b). The relationship between cognitive functions and sport-specific motor skills in elite youth soccer players. Frontiers in Psychology, 10, 817. https://doi.org/10.3389/fpsyg.2019.00817.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Scharfen, H. E., & Memmert, D. (2021). Cognitive training in elite soccer players: evidence of narrow, but not broad transfer to visual and executive function. German Journal of Exercise and Sport Research, 51(2), 135–145. https://doi.org/10.1007/s12662-020-00699-y.

    Article  Google Scholar 

  57. Schneider, C., Hanakam, F., Wiewelhove, T., Döweling, A., Kellmann, M., Meyer, T., Ferrauti, A., et al. (2018). Heart rate monitoring in team sports—A conceptual framework for contextualizing heart rate measures for training and recovery prescription. Frontiers in Physiology, 9, 1–19. https://doi.org/10.3389/fphys.2018.00639.

    Article  Google Scholar 

  58. Stillman, C. M., Cohen, J., Lehman, M. E., & Erickson, K. I. (2016). Mediators of physical activity on neurocognitive function: a review at multiple levels of analysis. Frontiers in Human Neuroscience, 10, 1–17. https://doi.org/10.3389/fnhum.2016.00626.

    CAS  Article  Google Scholar 

  59. Sánchez-Cubillo, I., Periáñez, J. A., Adrover-Roig, D., Rodríguez-Sánchez, J. M., Ríos-Lago, M., Tirapu, J., & Barceló, F. (2009). Construct validity of the trail making test: role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. Journal of the International Neuropsychological Society, 15(3), 438–450. https://doi.org/10.1017/S1355617709090626.

    Article  PubMed  Google Scholar 

  60. Unnithan, V., White, J., Georgiou, A., Iga, J., & Drust, B. (2012). Talent identification in youth soccer. Journal of Sports Sciences, 30(15), 1719–1726. https://doi.org/10.1080/02640414.2012.731515.

    Article  PubMed  Google Scholar 

  61. Van Der Fels, I. M. J., Te Wierike, S. C. M., Hartman, E., Elferink-Gemser, M. T., Smith, J., & Visscher, C. (2015). The relationship between motor skills and cognitive skills in 4–16 year old typically developing children: a systematic review. Journal of Science and Medicine in Sport, 18, 697–703. https://doi.org/10.1016/j.jsams.2014.09.007.

    Article  PubMed  Google Scholar 

  62. Verburgh, L., Scherder, E. J. A., Van Lange, P. A., & Oosterlaan, J. (2014). Executive functioning in highly talented soccer players. PloS ONE, 9(3), 91254. https://doi.org/10.1371/journal.pone.0091254.

    CAS  Article  Google Scholar 

  63. Verburgh, L., Scherder, E. J. A., Van Lange, P. A. M., & Oosterlaan, J. (2016). Do elite and amateur soccer players outperform non-athletes on neurocognitive functioning? A study among 8–12 year old children. PloS ONE. https://doi.org/10.1371/journal.pone.0165741.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Vestberg, T., Gustafson, R., Maurex, L., Ingvar, M., & Petrovic, P. (2012). Executive functions predict the success of top-soccer players. PloS ONE, 7(4), 34731. https://doi.org/10.1371/journal.pone.0034731.

    CAS  Article  Google Scholar 

  65. Vestberg, T., Reinebo, G., Maurex, L., Ingvar, M., & Petrovic, P. (2017). Core executive functions are associated with success in young elite soccer players. PloS ONE, 12(2), e170845. https://doi.org/10.1371/journal.pone.0170845.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Voss, M. W., Kramer, A. F., Basak, C., Prakash, R. S., & Roberts, B. (2010). Are expert athletes “expert” in the cognitive laboratory? A meta-analytic review of cognition and sport expertise. Applied Cognitive Psychology, 24(6), 812–826. https://doi.org/10.1002/acp.1588.

    Article  Google Scholar 

  67. Voyer, D., & Jansen, P. (2017). Motor expertise and performance in spatial tasks: a meta-analysis. Human Movement Science, 54, 110–124. https://doi.org/10.1016/j.humov.2017.04.004.

    Article  PubMed  Google Scholar 

  68. Waldron, M., & Murphy, A. (2013). A comparison of physical abilities and match performance characteristics among elite and subelite under-14 soccer players. Pediatric Exercise Science, 25(3), 423–434.

    Article  Google Scholar 

  69. Walsh, V. (2014). Is sport the brain’s biggest challenge? Current Biology, 24(18), R859–R860. https://doi.org/10.1016/j.cub.2014.08.003.

    CAS  Article  PubMed  Google Scholar 

  70. Yarrow, K., Brown, P., & Krakauer, J. W. (2009). Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nature Reviews Neuroscience, 10(8), 585–596. https://doi.org/10.1038/nrn2672.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Kreitz for helpful comments on previous versions of the manuscript.

Funding

This work was supported by SV Werder Bremen GmbH & Co KGaA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hans-Erik Scharfen.

Ethics declarations

Conflict of interest

H.-E. Scharfen and D. Memmert declare that they have no competing interests.

For this article no studies with animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scharfen, HE., Memmert, D. Relationship of executive functions and physical abilities in elite soccer players. Ger J Exerc Sport Res (2021). https://doi.org/10.1007/s12662-021-00767-x

Download citation

Keywords

  • Cognitive functions
  • High performance athletes
  • Physical performance
  • Endurance
  • Motor–cognition associations