Advertisement

Accuracy of optical heart rate measurement and distance measurement of a fitness tracker and their consequential use in sports

  • Mario BudigEmail author
  • Volker Höltke
  • Michael Keiner
Brief Communication

Abstract

Background

The possibilities of continuously monitoring everyday training have become more varied and precise. Fitness trackers are common devices used for collecting training data. The aim of this study was to validate the optical heart rate (HR) and global positioning system (GPS) distance measurements under real conditions.

Methods

In total, 30 moderate endurance-trained adults (15 males/15 females) completed a running test battery, 3 km of walking and running and 1.6 km of interval running, with optical HR measurement. The distance measurement test battery consisted of swimming for 500 and 1000 m, biking for 4.3 and for 36.7 km, stadium running for 3 km, walking and running for 1.6-km intervals, and off-road running for 3 and for 7.1 km. The criterion measurements consisted of HR measurement via chest strap and distance measurement via map in a 400‑m stadium and 50‑m pool. The differences between the measured HR/GPS distance data and the criterion measurement were calculated using several statistical methods.

Results

The t-test analysis of HR measurements showed significant differences during the 1.6 km of interval running (p < 0.049) over seven phases and at resting HR (RestHR; p < 0.021). The false discovery rate (FDR) calculation showed similar results (p < 0.047; p < 0.026; effect sizes interval running d > 0.67; RestHR d > 1.12). The t-test analysis of distance showed significant differences in biking (p = 0.000) and running test results (p < 0.002). The effect sizes were d < −0.47 and d > 0.72, respectively. The median absolute percentage error (MAPE) was <2.75% for biking and running and <4.50% for swimming.

Conclusion

This study showed significant inaccuracies in optical HR measurements during rapidly changing HRs in real field testing for the first time. The GPS measurements also showed significant differences, but MAPEs were negligible. Therefore, optical HR measurement should be used on a limited basis, while distance/speed control can be used without restrictions.

Keywords

Fitness tracker Accuracy Distance measurement Optical heart rate measurement Garmin Vivoactive HR 

Die Genauigkeit der optischen Herzfrequenz- und Entfernungsmessung eines Fitness-Trackers und die daraus folgende Nutzung im sportlichen Training

Zusammenfassung

Hintergrund

Die Möglichkeiten der kontinuierlichen Überwachung des alltäglichen Trainings sind vielfältiger und präziser geworden. Fitness-Tracker sind verbreitete Geräte zur Gewinnung von Trainingsdaten. Ziel der vorliegenden Studie war es, die optische Pulsmessung und die Entfernungsmessung mittels GPS („global positioning system“) unter realen Bedingungen zu validieren.

Methoden

Insgesamt absolvierten 30 mittelmäßig ausdauertrainierte Erwachsene (15 Männer/15 Frauen) eine Batterie von Lauftests, 3 km Gehen und Laufen sowie 1,6 km Lauf-Intervalltraining, mit optischer Pulsmessung. Die Testbatterie für die Entfernungsmessung bestand aus Schwimmen über 500 und 1000 m, Radfahren über 4,3 und 36,7 km, Rundenlaufen im Stadion über 3 km, Gehen und Laufen über 1,6-km-Intervalle sowie Geländelauf über 3 und 7,1 km. Die Referenzmessungen bestanden aus einer Pulsmessung mittels Brustgurt und einer Entfernungsmessung mittels Karte in einem 400-m-Stadion und einem 50-m-Pool. Die Unterschiede zwischen den ermittelten Puls‑/GPS-Entfernungsdaten und der Referenzmessung wurden unter Verwendung verschiedener statistischer Methoden berechnet.

Ergebnisse

Die t-Test-Analyse der Pulsmessung ergab signifikante Unterschiede während des 1,6 km Lauf-Intervalltrainings (p < 0,049) in 7 Phasen und in Ruhe (RestHR; p < 0,021). Die Berechnung der Falscherkennungsrate („false discovery rate“, FDR) wies ähnliche Ergebnisse auf (p < 0,047; p < 0,026; Effektgrößen für Lauf-Intervalltraining: d > 0,67; RestHR: d > 1,12). Die t-Test-Analyse der Entfernung zeigte signifikante Unterschiede bei den Testergebnissen für Radfahren (p = 0,000) und Laufen (p < 0,002). Die Effektgrößen betrugen d < −0,47 bzw. d > 0,72. Der mittlere absolute prozentuale Fehler (MAPE) lag bei <2,75% für Radfahren und Laufen sowie bei <4,50% für Schwimmen.

Schlussfolgerung

In der vorliegenden Studie zeigten sich signifikante Ungenauigkeiten bei der optischen Pulsmessung im erstmals durchgeführten realen Feldversuch bei einem sich schnell ändernden Puls. Auch die GPS-Messung ergab signifikante Unterschiede, aber die MAPE-Werte waren vernachlässigbar. Daher sollte die optische Pulsmessung nur begrenzt eingesetzt werden, während die Entfernungs‑/Geschwindigkeitsprüfung ohne Einschränkungen eingesetzt werden kann.

Schlüsselwörter

Fitness-Tracker Genauigkeit Distanzmessung Optische Herzfrequenzmessung Garmin-Vivoactive-HR-Multisportuhr 

Notes

Compliance with ethical guidelines

Conflict of interest

M. Budig, V. Höltke, and M. Keiner declare that they have no competing interests.

The tests were conducted from October 2017 to January 2018 in accordance with the guidelines of the Declaration of Helsinki. Approval for this study was obtained from the institutional review board and ethics committee of the University of Health & Sport, Resolution Code: 10/2018.92002800.

References

  1. Alinia, P., Cain, C., Fallahazadeh, R., Cook, D., Shahrokni, A., & Ghasemzadeh, H. (2017). How accurate is your activity tracker? A comparative study of step counts in low-intensity physical activities. JMIR Mhealth Uhealth, 5(8), e106.  https://doi.org/10.2196/mhealth.6321.CrossRefGoogle Scholar
  2. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological), 57(1), 289–300. https://www.jstor.org/stable/2346101.CrossRefGoogle Scholar
  3. Cummins, C., Orr, R., & O’connor, H. (2013). Global positioning systems (GPS) and microtechnology sensors in team sports: a systematic review. Sports Med, 43(10), 1025–1042.  https://doi.org/10.1007/s40279-013-0069-2.CrossRefGoogle Scholar
  4. Delgado-Gonzalo, R., Parak, J., Tarniceriu, A., Renevey, P., Bertschi, M., & Korhonen, I. (2015). Evaluation of accuracy and reliability of PulseOn optical heart rate monitoring device. Conf Proc IEEE Eng Med Biol Soc.  https://doi.org/10.1109/EMBC.2015.7318391.Google Scholar
  5. Dooley, E. E., Golaszewski, N. M., & Bartholomew, J. B. (2017). Estimating accuracy at exercise intensities: comparative study of self-monitoring heart rate and physical activity wearable devices. JMIR mHealth and uHealth, 5(3), e34.  https://doi.org/10.2196/mhealth.7043.CrossRefGoogle Scholar
  6. Düking, P., Hotho, A., Holmberg, H.-C., Fuss, F. K., & Sperlich, B. (2016). Comparison of non-invasive individual monitoring of the training and health of athletes with commercially available wearable technologies. Frontiers in Physiology, 7, 71.  https://doi.org/10.3389/fphys.2016.00071.CrossRefGoogle Scholar
  7. Fokkema, T., Kooiman, T. J., Krijnen, W. P., van der Schans, C. P., & de Groot, M. (2017). Reliability and validity of ten consumer activity trackers depend on walking speed. Med Sci Sports Exerc, 49(4), 793–800.  https://doi.org/10.1249/MSS.0000000000001146.CrossRefGoogle Scholar
  8. Garmin Ltd.. (2017). Owner’s manual garmin vivoactive HR. http://static.garmin.com/pumac/vivoactiveHR_OM_EN.pdf. Accessed 30 July 2018.Google Scholar
  9. Gorny, A. W., Liew, S. J., Tan, C. S., & Müller-Riemenschneider, F. (2017). Fitbit charge HR wireless hear rate monitor: validation study conducted under free-living conditions. JMIR mHealth and uHealth, 5(10), e157.  https://doi.org/10.2196/mhealth.8233.CrossRefGoogle Scholar
  10. Gray, A. J., Jenkins, D., Andrews, M. H., Taaffe, D. R., & Glover, M. L. (2010). Validity and reliability of GPS for measuring distance travelled in field-based team sports. Journal of Sports Sciences, 28(12), 1319–1325.  https://doi.org/10.1080/02640414.2010.504783.CrossRefGoogle Scholar
  11. Henriksen, A., Haugen-Mikalsen, M., Woldaregay, A. Z., Muzny, M., Hartvigsen, G., Hopstock, L. A., & Grimsgaard, S. (2018). Using fitness trackers and smartwatches to measure physical activity in research: analysis of consumer wrist-worn wearables. Journal of Medical Internet Research, 20(3), e110.  https://doi.org/10.2196/jmir.9157.CrossRefGoogle Scholar
  12. Hurst, H. T., & Sinclair, J. (2013). Validity and reliability of 5 Hz GPS for measurement of non-linear cycling distance and velocity. International Journal of Sports Science and Engineering, 7(1), 11–16.Google Scholar
  13. Hurst, H. T., Swarén, M., Hébert-Losier, K., Ericsson, F., Sinclair, J., Atkins, S., & Homlberg, H. (2013). GPS-based evaluation of activity profiles in elite downhill mountain biking and the influence of course type. Journal of Science and Cycling, 2(1), 20–32.Google Scholar
  14. Jo, E., Lewis, K., Directo, D., Kim, M. J., & Dolezal, B. A. (2016). Validation of biofeedback wearables for photoplethysmographic heart rate tracking. J Sports Sci Med, 15(3), 540–547.Google Scholar
  15. Karvonen, J., Chwalbinska-Moneta, J., & Saynajakangas, S. (1984). Comparison of heart rates measured by ECG and microcomputer. The Physician and Sportsmedicine, 12(6), 65–69.  https://doi.org/10.1080/00913847.1984.11701872.CrossRefGoogle Scholar
  16. Kingsley, M., Lewis, M. J., & Marson, R. E. (2005). Comparison of Polar 810s and an ambulatory ECG system for RR interval measurement during progressive exercise. Int J Sports Med, 26(1), 39–44.  https://doi.org/10.1055/s-2004-817878.CrossRefGoogle Scholar
  17. Kooiman, T. J., Dontje, M. L., Sprenger, S. R., Krijnen, W. P., van der Schans, C. P., & de Groot, M. (2015). Reliability and validity of ten consumer activity trackers. BMC Sports Sci Med Rehabil, 7, 24.  https://doi.org/10.1186/s13102-015-0018-5.CrossRefGoogle Scholar
  18. Larsson, P. (2003). Global positioning system and sport-specific testing. Sports Med, 33(15), 1093–1101.CrossRefGoogle Scholar
  19. MAGICMAPS (2018). North-Rhine-Westphalia 3D, the interactive map. Version 1.5. https://www.magicmaps.de/fileadmin/magicmaps/user_files/pdfs/interaktive_kartenwerke_demo_booklet.pdf. Accessed 18 Mar 2018.Google Scholar
  20. Nunan, D., Donovan, G., Jakovljevic, D., Hodges, L., Sandercock, G., & Brodie, D. (2009). Validity and reliability of short-term heart-rate variability from the polar s810. Med. Sci. Sports Exerc, 41, 243.  https://doi.org/10.1249/MSS.0b013e318184a4b1.CrossRefGoogle Scholar
  21. Parak, J., & Korhonen, I. (2014). Evaluation of wearable consumer heart rate monitors based on photopletysmography. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago. (pp. 3670–3673).  https://doi.org/10.1109/EMBC.2014.6944419.Google Scholar
  22. Parak, J., Uuskoski, M., Machek, J., & Korhonen, I. (2017). Estimating heart rate, energy expenditure, and physical performance with a wrist photoplethysmographic device during running. JMIR Mhealth Uhealth, 5(7), e97.  https://doi.org/10.2196/mhealth.7437.CrossRefGoogle Scholar
  23. Ross, R. M., & Jackson, A. S. (1990). Exercise concepts, calculations, and computer applications. Carmel: Benchmark Press.Google Scholar
  24. Sander, A., Keiner, M., Schlumberger, A., Wirth, K., & Schmidtbleicher, D. (2013). Effects of functional exercises in the warm-up on sprint performances. The Journal of Strength & Conditioning Research, 27(4), 995–1001.CrossRefGoogle Scholar
  25. Scott, M. T. U., Scott, T. J., & Kelly, V. G. (2016). The validity and reliability of global positioning systems in team sport: a brief review. The Journal of Strength & Conditioning Research, 30(5), 1470–1490.  https://doi.org/10.1519/jsc.0000000000001221.CrossRefGoogle Scholar
  26. Shcherbina, A., Mattsson, C. M., Waggott, D., Salisbury, H., Christle, J. W., Hastie, T., Wheeler, M. T., & Ashley, E. A. (2017). Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. Journal of Personalized Medicine, 7(2), 3.  https://doi.org/10.3390/jpm7020003.CrossRefGoogle Scholar
  27. Spierer, D. K., Rosen, Z., Litman, L. L., & Fujii, K. (2015). Validation of photoplethysmography as a method to detect heart rate during rest and exercise. Journal of Medical Engineering & Technology, 39(5), 264–271.  https://doi.org/10.3109/03091902.2015.1047536.CrossRefGoogle Scholar
  28. Stahl, S. E., An, H.-S., Dinkel, D. M., Noble, J. M., & Lee, J.-M. (2016). How accurate are the wrist-based heart rate monitors during walking and running activities? Are they accurate enough? BMJ Open Sport-Exercise Medicine, 2(1), e106.  https://doi.org/10.1136/bmjsem-2015-000106.CrossRefGoogle Scholar
  29. Thompson, W. R. (2016). Worldwide survey of fitness trends for 2017. ACSM’S Health Fit. J, 20(6), 8–17.  https://doi.org/10.1249/FIT.0000000000000252.Google Scholar
  30. Thompson, W. R. (2017). Worldwide survey of fitness trends for 2018. ACSM’S Health Fit. J, 21(6), 10–19.  https://doi.org/10.1249/FIT.0000000000000341.CrossRefGoogle Scholar
  31. Wahl, Y., Düking, P., Droszez, A., Wahl, P., & Mester, J. (2017). Criterion-validity of commercially available physical activity tracker to estimate step count, covered distance and energy expenditure during sports conditions. Front Physiol, 8, 725.  https://doi.org/10.3389/fphys.2017.00725.CrossRefGoogle Scholar
  32. Xie, J., Wen, D., Liang, L., Jia, Y., Gao, L., & Lei, J. (2018). Evaluating the validity of current mainstream wearable devices in fitness tracking under various physical activities: comparative study. JMIR mHealth and uHealth, 6(4), e94.  https://doi.org/10.2196/mhealth.9754.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Sports ScienceGerman University of Health & Sport, DHGSBerlinGermany

Personalised recommendations