Advertisement

German Journal of Exercise and Sport Research

, Volume 47, Issue 4, pp 371–384 | Cite as

Altersspezifische Anpassungen an ein Dehntraining

Eine metaanalytische Betrachtung
  • Thomas HaabEmail author
  • Jaqueline Martini
  • Stefan Baluktsian
  • Georg Wydra
Übersichten
  • 280 Downloads

Zusammenfassung

Bei Personen in höherem Lebensalter kommt es u. a. aufgrund degenerativer Veränderungen des aktiven und passiven Bewegungsapparates zu einer verringerten Beweglichkeit. Aus diesem Grund wird für ältere Personen ein Dehntraining empfohlen. Im Rahmen einer systematischen Literaturrecherche konnte anhand von 42 Primärstudien gezeigt werden, dass bislang nur vereinzelte Befunde zu den Anpassungserscheinungen durch ein Dehntraining bei Personen in höherem Lebensalter existieren. Der überwiegende Anteil an Trainingsstudien wurde mit jungen Probanden durchgeführt. Weiterhin beschäftigten sich die Studien zumeist mit der Veränderung einer maximalen Beweglichkeit durch ein Dehntraining. Weitere biomechanische Untersuchungen, wie die Veränderung der Dehnungsspannungskurve, sind nur vereinzelt zu finden und fehlen bei Studien mit älteren Personen fast völlig. Die Befunde aus der systematischen Literaturrecherche und anschließenden metaanalytischen Betrachtung konstatieren, dass ältere Personen ihre Beweglichkeit ähnlich gut durch ein Dehntraining beeinflussen können wie jüngere Personen. Allerdings benötigen ältere Personen zum Erreichen ähnlich großer Effektstärken tendenziell längere Trainingsphasen. Ältere Personen profitieren außerdem eher von einer längeren Dehndauer über 30 s. Des Weiteren profitieren Ältere von einer Eigendehnung und einer submaximalen Dehnintensität. Es besteht nach wie vor ein Forschungsdefizit, da bisher nur eine Studie existiert, in der Anpassungserscheinungen nach einem langzeitigen Dehntraining zwischen jüngeren und älteren Erwachsenen konkret verglichen wurde. Diese ist allerdings aufgrund ihres Erscheinungsdatums nicht in die Metaanalyse eingeflossen.

Schlüsselwörter

Dehntraining Muskeldehnung Lebensalter Alternsgang Metaanalyse 

Age-specific adaptations by stretching exercises

A meta-analysis

Abstract

Flexibility is reduced in older people due to, among other things, degenerative changes of the musculoskeletal system. For this reason, stretching exercises are recommended for older people. Based on 42 primary studies identified in a systematic review, only isolated findings on the influence of stretching exercises on adaptation phenomena in older people are available. The majority of training studies were conducted with young subjects. Furthermore, the studies were mostly concerned with changes in maximum range of motion by stretching. Further biomechanical examinations, such as changes in the stress-strain curve, can only be found in isolated cases and studies with older persons are almost nonexistent. The findings from the systematic review and subsequent meta-analysis reveal that older persons can also influence their flexibility by stretching exercises as much as younger people can. However, older people tend to require longer exercise phases to reach similar effect sizes. Older persons also benefit from a stretching longer than 30 s. In addition, older people benefit from self-stretching and submaximal stretching intensity. There is still a lack of research given that there has been only one study to date specifically comparing adaptation phenomena following long-term stretching training between young and old adults. However, this study was not included in the meta-analysis due to its date of publication.

Keywords

Flexibility Muscle stretching Age Aging Meta-analysis 

Notes

Danksagung

Die Autoren bedanken sich bei zwei unbekannten Gutachtern für hilfreiche Anmerkungen.

Einhaltung ethischer Richtlinien

Interessenkonflikt

T. Haab, J. Martini, S. Baluktsian und G. Wydra geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literaturverzeichnis

  1. Alter, M. J. (2004). Science of flexibility (3. Aufl.). Champaign: Human Kinetics.Google Scholar
  2. Apostolopoulos, N., Metsios, G. S., Flouris, A. D., Koutedakis, Y., & Wyon, M. A. (2015). The relevance of stretch intensity and position-a systematic review. Frontiers in Psychology, 6, 1128. doi: 10.3389/fpsyg.2015.01128.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ayala, F., & Baranda, A. P. S. (2010). Effect of 3 different active stretch durations on hip flexion range of motion. Journal of Strength and Conditioning Research, 24(2), 430–436.CrossRefPubMedGoogle Scholar
  4. Ayala, F., Sainz de Baranda, P., De Ste Croix, M., & Santonja, F. (2013). Comparison of active stretching technique in males with normal and limited hamstring flexibility. Physical Therapy in Sport, 14(2), 98–104.CrossRefPubMedGoogle Scholar
  5. Bandy, W. D., & Irion, J. M. (1994). The effect of time on static stretch on the flexibility of the hamstring muscles. Physical Therapy, 74(9), 842–845.Google Scholar
  6. Bandy, W. D., Irion, J. M., & Briggler, M. (1997). The effect of time and frequency of static stretching on flexibility of the hamstring muscles. Physical Therapy, 77(10), 1090–1096.CrossRefPubMedGoogle Scholar
  7. Batista, L. H., Vilar, A. C., Ferreira, J. J. A., Rebelatto, J. R., & Salvini, T. F. (2009). Active stretching improves flexibility, joint torque, and functional mobility in older women. American Journal of Physical Medicine & Rehabilitation, 88(10), 815–822.CrossRefGoogle Scholar
  8. Björklund, M., Hamberg, J., & Crenshaw, A. G. (2001). Sensory adaptation after a 2-week stretching regimen of the rectus femoris muscle. Archives of Physical Medicine and Rehabilitation, 82(9), 1245–1250.CrossRefPubMedGoogle Scholar
  9. Bortz, J., & Döring, N. (2006). Forschungsmethoden und Evaluation für Human- und Sozialwissenschaftler (4. Aufl.). Heidelberg: Springer.CrossRefGoogle Scholar
  10. Carlson, C. R., & Curran, S. L. (1994). Stretch-based relaxation training. Patient Education and Counseling, 23(1), 5–12.CrossRefPubMedGoogle Scholar
  11. Carlson, C. R., Collins, F. L., Nitz, A. J., Sturgis, E. T., & Rogers, J. L. (1990). Muscle stretching as an alternative relaxation training procedure. Journal of Behavior Therapy and Experimental Psychiatry, 21(1), 29–38.CrossRefPubMedGoogle Scholar
  12. Chagas, M. H., & Schmidtbleicher, D. (2004). Auswirkungen von Beweglichkeitstraining auf die Bewegungsamplitude, Dehnungsspannung und Dehngrenze nach einer Trainings- und Detrainingsperiode. 1. Teil: Untersuchungsmethodik und Untersuchungsergebnisse. Leistungssport, 34(5), 28–32.Google Scholar
  13. Chan, S. P., Hong, Y., & Robinson, P. D. (2001). Flexibility and passive resistance of the hamstrings of young adults using two different static stretching protocols. Scandinavian Journal of Medicine & Science in Sports, 11, 81–86.CrossRefGoogle Scholar
  14. Chodzko-Zajko, W. J., Proctor, D. N., Fiatarone Singh, M. A., Minson, C. T., Nigg, C. R., Salem, G. J., & Skinner, J. S. (2009). American College of Sports Medicine position stand. Exercise and physical activity for older adults. Medicine & Science in Sports & Exercise, 41(7), 1510–1530.CrossRefGoogle Scholar
  15. Cipriani, D., Abel, B., & Pirrwitz, D. (2003). A comparison of two stretching protocols on hip range of motion: Implications for total daily stretch duration. Journal of Strength and Conditioning Research, 17(2), 274–278.PubMedGoogle Scholar
  16. Cipriani, D. J., Terry, M. E., Haines, M. A., Tabibnia, A. P., & Lyssanova, O. (2012). Effect of stretch frequency and sex on the rate of gain and rate of loss in muscle flexibility during a hamstring-stretching program: a randomized single-blind longitudinal study. Journal of Strength and Conditioning Research, 26(8), 2119–2129.CrossRefPubMedGoogle Scholar
  17. Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159.CrossRefPubMedGoogle Scholar
  18. Covert, C. A., Alexander, M. P., Petronis, J. J., & Davis, D. S. (2010). Comparison of ballistic and static stretching on hamstring muscle length using an equal stretching dose. Journal of Strength and Conditioning Research, 24(11), 3008–3014.CrossRefPubMedGoogle Scholar
  19. Davis, D. S., Ashby, P. E., McCale, K. L., McQuain, J. A., & Wine, J. M. (2005). The effectiveness of 3 stretching techniques on hamstring flexibility using consistent stretching parameters. Journal of Strength and Conditioning Research, 19(1), 27–32.PubMedGoogle Scholar
  20. Decoster, L. C., Cleland, J., Altieri, C., & Russell, P. (2005). The effects of hamstring stretching on range of motion: a systematic literature review. Journal of Orthopaedic & Sports Physical Therapy, 35(6), 377–387.CrossRefGoogle Scholar
  21. Farage, M. A., Miller, K. W., Ajayi, F., & Hutchins, D. (2012). Design principles to accommodate older adults. Global Journal of Health Science, 4(2), 2–25.PubMedPubMedCentralGoogle Scholar
  22. Feland, J. B., Myrer, J. W., Schulthies, S. S., Fellingham, G. W., & Measom, G. W. (2001). The effect of duration of stretching of the hamstring muscle group increasing range of motion in people aged 65 years or older. Physical Therapy, 81(5), 1110–1117.PubMedGoogle Scholar
  23. Ferreira, G. N. T., Teixeira-Salmela, L. F., & Guimarães, C. Q. (2007). Gains in flexibility related to measures of muscular performance: impact of flexibility on muscular performance. Clinical Journal of Sport Medicine, 17(4), 276–281.CrossRefPubMedGoogle Scholar
  24. Ford, G. S., Mazzone, M. A., & Taylor, K. (2005). The effect of 4 different durations of static hamstring stretching on passive knee-extension range of motion in healthy subjects. Journal of Sport Rehabilitation, 14(2), 95–107.CrossRefGoogle Scholar
  25. Frankel, J. E., Bean, J. F., & Frontera, W. R. (2006). Exercise in the elderly: research and clinical practice. Clinics in Geriatric Medicine, 22(2), 239–256.CrossRefPubMedGoogle Scholar
  26. Freitas, S. R., Vaz, J. R., Gomes, L., Silvestre, R., Hilário, E., Cordeiro, N., Carnide, F., Pezarat-Correia, P., & Mil-Homens, P. (2015). A new tool to assess the perception of stretching intensity. Journal of Strength and Conditioning Research, 29(9), 2666–2678.CrossRefPubMedGoogle Scholar
  27. Freiwald, J. (2009). Optimales Dehnen: Sport - Prävention - Rehabilitation. Balingen: Spitta.Google Scholar
  28. Freiwald, J., Engelhardt, M., & Reuter, I. (1998). Neuromuskuläre Dysbalance in Medizin und Sport. Ursachen, Einordnung und Behandlung. In L. Zichner, M. Engelhardt & J. Freiwald (Hrsg.), Neuromuskuläre Dysbalancen (S. 165–193). Nürnberg: Novatis Pharma.Google Scholar
  29. Fröhlich, M., & Pieter, A. (2009). Cohen’s Effektstärken als Mass der Bewertung von praktischer Relevanz. Implikationen für die Praxis. Schweizerische Zeitschrift für Sportmedizin und Sporttraumatologie, 57(4), 139–142.Google Scholar
  30. Gajdosik, R. L. (1991). Effects of static stretching on the maximal length and resistance to passive stretch of short hamstring muscles. The Journal of Orthopaedic & Sports Physical Therapy, 14(6), 250–255.CrossRefGoogle Scholar
  31. Gajdosik, R. L., Vander Linden, D. W., McNair, P. J., Williams, A. K., & Riggin, T. J. (2005). Effects of an eight-week stretching program on the passive-elastic properties and function of the calf muscles of older women. Clinical Biomechanics, 20(9), 973–983.CrossRefPubMedGoogle Scholar
  32. Gajdosik, R. L., Allred, J. D., Gabbert, H. L., & Sonsteng, B. A. (2007). A stretching program increases the dynamic passive length and passive resistive properties of the calf muscle-tendon unit of unconditioned younger women. European Journal of Applied Physiology, 99(4), 449–454.CrossRefPubMedGoogle Scholar
  33. Gallon, D., Rodacki, A. L. F., Hernandez, S. G., Drabovski, B., Outi, T., Bittencourt, L. R., & Gomes, A. R. S. (2011). The effects of stretching on the flexibility, muscle performance and functionality of institutionalized older women. Brazilian Journal of Medical and Biological Research, 44(3), 229–235.CrossRefPubMedGoogle Scholar
  34. Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I.-M., Nieman, D. C., & Swain, D. P. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine & Science in Sports & Exercise, 43(7), 1334–1359.CrossRefGoogle Scholar
  35. Glück, S., Schwarz, M., Hoffmann, U., & Wydra, G. (2002). Bewegungsreichweite, Zugkraft und Muskelaktivität bei eigen- und fremdregulierter Dehnung. Deutsche Zeitschrift für Sportmedizin, 53(3), 66–71.Google Scholar
  36. Godges, J. J., MacRae, P. G., & Engelke, K. A. (1993). Effects of exercise on hip range of motion, trunk muscle performance, and gait economy. Physical Therapy, 73(7), 468–477.CrossRefPubMedGoogle Scholar
  37. González-Ravé, J. M., Sánchez-Gómez, A., & Santos-García, D. J. (2012). Efficacy of two different stretch training programs (passive vs. proprioceptive neuromuscular facilitation) on shoulder and hip range of motion in older people. Journal of Strength and Conditioning Research, 26(4), 1045–1051.CrossRefPubMedGoogle Scholar
  38. Gribble, P. A., Guskiewicz, K. M., Prentice, W. E., & Shields, E. W. (1999). Effects of static and hold-relax stretching on hamstring range of motion using the FlexAbility LE1000. Journal of Sport Rehabilitation, 8(3), 195–208.CrossRefGoogle Scholar
  39. Haab, T., & Wydra, G. (2017). The effect of age on hamstring passive properties after a 10‑week stretch training. Journal of Physical Therapy Science, 29(6), 1048–1053. doi: 10.1589/jpts.29.1048.
  40. Hayes, B. T., Harter, R. A., Widrick, J. J., Williams, D. P., Hoffman, M. A., & Hicks-Little, C. A. (2012). Lack of neuromuscular origins of adaptation after a long-term stretching program. Journal of Sport Rehabilitation, 21(2), 99–106.CrossRefPubMedGoogle Scholar
  41. Hedges, L. V. (1981). Distribution theory for Glass’s estimator of effect size and related estimators. Journal of Educational and Behavioral Statistics, 6(2), 107–128.CrossRefGoogle Scholar
  42. Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. Orlando: Academic Press.Google Scholar
  43. Higgins, J., & Green, S. (Hrsg.). (2008). Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration doi: 10.1002/9780470712184.
  44. Holland, G. J., Tanaka, K., Shigematsu, R., & Nakagaichi, M. (2002). Flexibility and physical functions of older adults: a review. Journal of Aging and Physical Activity, 10(2), 169–206.CrossRefGoogle Scholar
  45. Johnson, A. W., Mitchell, U. H., Meek, K., & Feland, J. B. (2014). Hamstring flexibility increases the same with 3 or 9 repetitions of stretching held for a total time of 90 s. Physical Therapy in Sport, 15(2), 101–105.CrossRefPubMedGoogle Scholar
  46. Johnson, E. G., Bradley, B. D., Witkowski, K. R., & McKee, R. Y. (2007). Effect of a static calf muscle-tendon unit stretching program on ankle dorsiflexion range of motion of older women. Journal of Geriatric Physical Therapy, 30(2), 49–52.CrossRefPubMedGoogle Scholar
  47. Kerrigan, D. C., Xenopoulos-Oddsson, A., Sullivan, M. J., Lelas, J. J., & Riley, P. O. (2003). Effect of a hip flexor-stretching program on gait in the elderly. Archives of Physical Medicine and Rehabilitation, 84(1), 1–6.CrossRefPubMedGoogle Scholar
  48. Klee, A. (2003). Methoden und Wirkungen des Dehnungstrainings. Die Ruhespannungs-Dehnungskurve - ihre Erhebung beim M.rectus femoris und ihre Veränderung im Rahmen kurzfristiger Treatments. Schorndorf: Hofmann.Google Scholar
  49. Klee, A., & Wiemann, K. (2005). Beweglichkeit/Dehnfähigkeit. Schorndorf: Hofmann.Google Scholar
  50. Konrad, A., & Tilp, M. (2014). Increased range of motion after static stretching is not due to changes in muscle and tendon structures. Clinical Biomechanics, 29(6), 636–642.CrossRefPubMedGoogle Scholar
  51. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174.CrossRefPubMedGoogle Scholar
  52. La Roche, D. P., & Connolly, D. A. J. (2006). Effects of stretching on passive muscle tension and response to eccentric exercise. The American Journal of Sports Medicine, 34(6), 1000–1007.CrossRefGoogle Scholar
  53. Law, M., Stewart, D., Pollock, N., Letts, L., Bosch, J., Westmorland, M., & McMaster University & Occupational Therapy Evidence-based Practice Research Group (1998). Guidelines for critical review form. Quantitative studies. http://srs-mcmaster.ca/wp-content/uploads/2015/05/Guidelines-for-Critical-Review-Form-Quantitative-Studies.pdf. Zugegriffen: 23.06.2017Google Scholar
  54. López-Bedoya, J., Vernetta-Santana, M., Robles-Fuentes, A., & Ariza-Vargas, L. (2013). Effect of three types of flexibility training on active and passive hip range of motion. The Journal of Sports Medicine and Physical Fitness, 53(3), 304–311.PubMedGoogle Scholar
  55. Magnusson, S. P. (1998). Passive properties of human skeletal muscle during stretch maneuvers. A review. Scandinavian Journal of Medicine & Science in Sports, 8, 65–77.CrossRefGoogle Scholar
  56. Maher, C. G., Sherrington, C., Herbert, R. D., Moseley, A. M., & Elkins, M. (2003). Reliability of the PEDro scale for rating quality of randomized controlled trials. Physical Therapy, 83(8), 713–721.PubMedGoogle Scholar
  57. Mahieu, N. N., McNair, P., Muynck, M., Stevens, V., Blanckaert, I., Smits, N., & Witvrouw, E. (2007). Effect of static and ballistic stretching on the muscle-tendon tissue properties. Medicine & Science in Sports & Exercise, 39(3), 494–501.CrossRefGoogle Scholar
  58. Mahieu, N. N., Cools, A., Wilde, B., Boon, M., & Witvrouw, E. (2009). Effect of proprioceptive neuromuscular facilitation stretching on the plantar flexor muscle-tendon tissue properties. Scandinavian Journal of Medicine & Science in Sports, 19(4), 553–560.CrossRefGoogle Scholar
  59. Marschall, F. (1999). Wie beeinflussen unterschiedliche Dehnintensitäten kurzfristig die Veränderung der Bewegungsreichweite? Deutsche Zeitschrift für Sportmedizin, 50(1), 5–9.Google Scholar
  60. McGraw, L. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1(4), 390–390.CrossRefGoogle Scholar
  61. Muyor, J. M., Lopez-Minarro, P. A., & Casimiro, A. J. (2012). Effect of stretching program in an industrial workplace on hamstring flexibility and sagittal spinal posture of adult women workers: a randomized controlled trial. Journal of Back and Musculoskeletal Rehabilitation, 25(3), 161–169.CrossRefPubMedGoogle Scholar
  62. Nonaka, H., Mita, K., Watakabe, M., Akataki, K., Suzuki, N., Okuwa, T., & Yabe, K. (2002). Age-related changes in the interactive mobility of the hip and knee joints: a geometrical analysis. Gait & Posture, 15(3), 236–243.CrossRefGoogle Scholar
  63. Olivier, N., Marschall, F., & Büsch, D. (2008). Grundlagen der Trainingswissenschaft und -lehre. Schorndorf: Hofmann.Google Scholar
  64. Paul, J., Balakrishnan, P., & Izham, M. (2014). Comparative effect of static and dynamic stretching exercise to improve flexibility of hamstring muscles among Non Athletes. International Journal of Physiotherapy, 1(4), 195–199.CrossRefGoogle Scholar
  65. Pollock, M. L., Gaesser, G. A., Butcher, J. D., Després, J. P., Dishman, R. K., Franklin, B. A., & Garber, C. E. (1998). ACSM Position Stand: The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Medicine & Science in Sports & Exercise, 30(6), 975–991.Google Scholar
  66. Rancour, J., Holmes, C. F., & Cipriani, D. J. (2009). The effects of intermittent stretching following a 4-week static stretching protocol: a rondomized trial. Journal of Strength and Conditioning Research, 23(8), 2217–2222.CrossRefPubMedGoogle Scholar
  67. Reid, D. A., & McNair, P. J. (2004). Passive force, angle, and stiffness changes after stretching of hamstring muscles. Medicine & Science in Sports & Exercise, 36(11), 1944–1948.CrossRefGoogle Scholar
  68. Rowlands, A. V., Marginson, V. F., & Lee, J. (2003). Chronic flexibility gains: effect of isometric contraction duration during proprioceptive neuromuscular facilitation stretching techniques. Research Quarterly for Exercise and Sport, 74(1), 47–51.CrossRefPubMedGoogle Scholar
  69. Rustenbach, S. (2003). Metaanalyse: eine anwendungsorientierte Einführung. Bern: Hans Huber.Google Scholar
  70. Ryan, E. D., Herda, T. J., Costa, P. B., Herda, A. A., & Cramer, J. T. (2014). Acute effects of passive stretching of the plantarflexor muscles on neuromuscular function: the influence of age. Age, 36(4), 9672. doi: 10.1007/s11357-014-9672-x.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sainz de Baranda, P., & Ayala, F. (2010). Chronic flexibility improvement after 12 week of stretching program utilizing the ACSM recommendations: hamstring flexibility. International Journal of Sports Medicine, 31(6), 389–396.CrossRefPubMedGoogle Scholar
  72. Schönthaler, S., & Ott, H. (1994). Auswirkungen verschiedener Dehnmethoden auf die maximale Bewegungsreichweite und die Dehnungsspannung. Messung an der ischiocruralen Muskulatur mit einem computergesteuerten isokinetischen Meßsystem. Unveröffentlichte Diplomarbeit, Universität des Saarlandes, Saarbrücken.Google Scholar
  73. Schönthaler, S. R., & Ohlendorf, K. (2002). Biomechanische und neurophysiologische Veränderungen nach ein- und mehrfach seriellem passiv-statischem Beweglichkeitstraining (1. Aufl.). Köln: Sport und Buch Strauss.Google Scholar
  74. Schönthaler, S. R., Ohlendorf, K., Ott, H., Meyer, T., Kindermann, W., & Schmidtbleicher, D. (1998). Biomechanische und neurophysiologische Parameter zur Erfassung der Dehnbarkeit von Muskel-Sehnen-Einheiten. Deutsche Zeitschrift für Sportmedizin, 49(7/8), 223–230.Google Scholar
  75. Seifert, T. L. (1991). Determining effect sizes in various experimental designs. Educational and Psychological Measurement, 51(2), 341–347.CrossRefGoogle Scholar
  76. Smith, C. A. (1994). The warm-up procedure: to stretch or not to stretch. A brief review. The Journal of Orthopaedic & Sports Physical Therapy, 19(1), 12–17.CrossRefGoogle Scholar
  77. Spitzer, R. L., Cohen, J., Fleiss, J. L., & Endicott, J. (1967). Quantification of agreement in psychiatric diagnosis. Archives of General Psychiatry, 17(1), 83–87.CrossRefPubMedGoogle Scholar
  78. Stock, W. A. (1994). Systematic coding for research synthesis. In H. M. Cooper & L. V. Hedges (Hrsg.), The handbook of research synthesis (S. 125–138). New York: Russell Sage Foundation.Google Scholar
  79. Toft, E., Espersen, G. T., Kålund, S., Sinkjaer, T., & Hornemann, B. C. (1989). Passive tension of the ankle before and after stretching. The American Journal of Sports Medicine, 17(4), 489–494.CrossRefPubMedGoogle Scholar
  80. Watt, J. R., Jackson, K., Franz, J. R., Dicharry, J., Evans, J., & Kerrigan, D. C. (2011). Effect of a supervised hip flexor stretching program on gait in elderly individuals. PM & R, 3(4), 324–329.CrossRefGoogle Scholar
  81. Wiemann, K. (1991). Beeinflussung muskulärer Parameter durch ein zehnwöchiges Dehnungstraining. Sportwissenschaft, 21(3), 295–306.CrossRefGoogle Scholar
  82. Wiemann, K. (1994). Beeinflussung muskulärer Parameter durch unterschiedliche Dehnverfahren. In M. Hostert & H.-U. Nepper (Hrsg.), Dehnen und Mobilisieren (S. 40–71). Öhringen: Speh-Druck.Google Scholar
  83. Wortman, P. M. (1994). Judging research quality. In H. M. Cooper & L. V. Hedges (Hrsg.), The handbook of research synthesis (S. 97–109). New York: Russell Sage Foundation.Google Scholar
  84. Wydra, G. (2008). Die Trainierbarkeit der Beweglichkeit in der Lebensspanne. Reanalyse vorliegender Studien unter Alternsgesichtspunkten. Pt Zeitschrift für Physiotherapeuten, 60(12), 1312–1331.Google Scholar
  85. Wydra, G., Bös, K., & Karisch, G. (1991). Zur Effektivität verschiedener Dehntechniken. Deutsche Zeitschrift für Sportmedizin, 42(9), 386–400.Google Scholar
  86. Wydra, G., Glück, S., & Roemer, K. (1998). Entwicklung, Evaluation und erste experimentelle Erprobung eines Dehnungsmeßschlittens. In J. Wiemeyer (Hrsg.), Forschungsmethodologische Aspekte von Bewegung, Motorik und Training im Sport (S. 255–259). Hamburg: Czwalina.Google Scholar
  87. Ylinen, J., Kankainen, T., Kautiainen, H., Rezasoltani, A., Kuukkanen, T., & Häkkinen, A. (2009). Effect of stretching on hamstring muscle compliance. Journal of Rehabilitation Medicine, 41(1), 80–84.CrossRefPubMedGoogle Scholar
  88. Young, R., Nix, S., Wholohan, A., Bradhurst, R., & Reed, L. (2013). Interventions for increasing ankle joint dorsiflexion: a systematic review and meta-analysis. Journal of Foot and Ankle Research, 6(1), 46. doi: 10.1186/1757-1146-6-46.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Young, W. B., & Behm, D. G. (2002). Should static stretching be used during a warm-up for strength and power activities? Strength and Conditioning Journal, 24(6), 33–37.CrossRefGoogle Scholar
  90. Young, W. B. (2007). The use of static stretching in warm-up for training and competition. International Journal of Sports Physiology and Performance, 2(2), 212–216.CrossRefPubMedGoogle Scholar
  91. Yuktasir, B., & Kaya, F. (2009). Investigation into the long-term effects of static and PNF stretching exercises on range of motion and jump performance. Journal of Bodywork and Movement Therapies, 13(1), 11–21.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Thomas Haab
    • 1
    • 2
    Email author
  • Jaqueline Martini
    • 1
  • Stefan Baluktsian
    • 1
  • Georg Wydra
    • 1
  1. 1.Sportwissenschaftliches InstitutUniversität des SaarlandesSaarbrückenDeutschland
  2. 2.LUNEX UniversityDifferdangeLuxemburg

Personalised recommendations