German Journal of Exercise and Sport Research

, Volume 47, Issue 3, pp 232–245 | Cite as

Schlagmann 2.0 – Bewegungsakustische Dimensionen interpersonaler Koordination im Mannschaftssport

Hauptbeiträge

Zusammenfassung

Mannschaftssport erfordert neben der individuellen Bewegungskoordination auch die interpersonale Koordination der Bewegungen. Ein Beispiel ist das Rudern, bei dem die Technikkoordination und -synchronisation essenziell für die Erzeugung mannschaftlicher Synergieeffekte sind. In diesem Artikel wird ein Ansatz zur systematischen Untersuchung interpersonaler Koordinationsmechanismen vorgestellt, der zusätzliche Optionen zur unmittelbaren (sport-)praktischen Anwendung bietet. Ein zentrales Element ist die Methode der Bewegungssonifikation, mit der Bewegungsparameter im zeitlichen Verlauf akustisch abgebildet werden. Auf diese Weise können dynamische und kinematische Bewegungsinformationen selektiv vermittelt und ihre wahrnehmungs- und ausführungsseitigen Wirkungen verglichen werden.

In der vorliegenden Studie wurde die Wirkung sonifizierter kinematischer und dynamischer Bewegungsparameter auf Synchronisations- und Wahrnehmungsgenauigkeiten untersucht. Dazu ruderten Versuchspersonen auf einem Ruderergometer zu den Sonifikationen einer anderen Person und schätzten in einer separaten Aufgabe die Frequenzen gehörter Bewegungen der eigenen Person sowie der anderer Personen.

Die Ergebnisse zeigen, dass die Versuchspersonen ihre Ruderbewegungen in Abhängigkeit der dargebotenen Informationsart zeitlich variierten. Keine signifikanten Unterschiede ergaben sich hingegen bei der Schätzung der Bewegungsfrequenzen. Dennoch wurden eigene Bewegungsfrequenzen anders geschätzt als die Frequenzen anderer Personen. Dieser sogenannte Eigen/Fremd-Effekt wurde unter Berücksichtigung zweier Kovariaten signifikant: 1. der Leistung während der Synchronisationsaufgabe und 2. der Fähigkeit, eigene sonifizierte Bewegungen zu identifizieren. Diese Ergebnisse deuten auf eine unmittelbare Ansteuerung motorischer Repräsentationen durch das Hören von Bewegungssonifikationen hin und lassen Rückschlüsse zur Struktur der Repräsentationen zu. Perspektiven für die Sportpraxis ergeben sich in Form einer gezielten interpersonalen Abstimmung und Synchronisation der individuellen Bewegungstechniken mittels zeitsynchroner Übermittlung kinematischer und dynamischer Bewegungsinformationen anderer Teammitglieder.

Schlüsselwörter

Interpersonale Koordination Synchronisation Sonifikation Interne Modellierung Embodiment 

Coxswain 2.0 – movement–acoustic dimensions of interpersonal coordination in team sports

Abstract

Team sport requires individual and interpersonal coordination of movements. In rowing, for example, the coordination and synchronization of movement techniques is essential to create synergy effects of joint team rowing. Here, we provide a new approach for the systematic investigation of the mechanisms behind interpersonal coupling and discuss its direct applicability to sport practice. The key element is movement sonification, which describes the transformation of movement features into sound features. Thus, dynamic and kinematic movement information can be selectively conveyed and their perception–action effects be compared. The present study compared the impact of kinematic and dynamic sonifications on movement synchronization and perceptual accuracy. In a first session, the participants rowed on an indoor rower to sonifications of another person. In a second session, they listened to sonifications of their own and to those of other persons and estimated rowing frequencies.

In the synchronization task, the participants temporally adjusted their rowing movements in relation to the type of information provided. In the perceptual task, differences between conditions were not significant. However, estimation of movement frequencies differed when listening to their own movements compared to listening to other movements. This own/other effect became significant after controlling (1). for the synchronization performance and (2). for the ability to identify their own techniques on the basis of the sonifications. These variables significantly covaried with the own/other effect.

The results suggest that the listening to movement sonifications directly addresses motor representations and permits conclusions about the structure of those representations. Perspectives for sport practice are given by increased synchronization and enhanced interpersonal coordination of individual movement techniques by means of a transmission of kinematic and dynamic movement information to all team members at the same time.

Keywords

Interpersonal coordination Synchronisation Sonification Internal modelling Embodiment 

Literatur

  1. Agliotti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11, 1109–1116.CrossRefGoogle Scholar
  2. Aschersleben, G. (2002). Temporal control of movements in sensorimotor synchronization. Brain and Cognition, 48, 66–79.CrossRefPubMedGoogle Scholar
  3. Bangert, M., & Altenmüller, E. (2003). Mapping perception to action in piano practice: A longitudinal DC-EEG-study. BMC Neuroscience, 4, 26–36.CrossRefPubMedCentralGoogle Scholar
  4. Beilock, S. L., & Hohmann, T. (2010). Embodied Cognition. Zeitschrift für Sportpsychologie, 17(4), 120–129.CrossRefGoogle Scholar
  5. Bischoff, M., Zentgraf, K., Lorey, B., Pilgramm, S., Balser, N., Baumgartner, E., Hohmann, T., Stark, R., Vaitl, D., & Munzert, J. (2012). Motor familiarity: Brain activation when watching kinematic displays of one’s own movements. Neuropsycholgia, 50, 2085–2092.CrossRefGoogle Scholar
  6. Blackmore, S. J., Wolpert, D., & Frith, C. (2000). Why can’t you tickle yourself? NeuroReport, 11, 11–16.CrossRefGoogle Scholar
  7. Cesari, P., Camponogara, I., Papetti, S., Rocchesso, D., & Fontana, F. (2014). Might as well jump: sound affects muscle activation in skateboarding. PLoS One, 9(3), e90156.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen, L., & Vroomen, J. (2013). Intersensory binding across space and time: a tutorial review. Attention, Perception, & Psychophysics, 75(5), 790–811.CrossRefGoogle Scholar
  9. Demos, A. P., Chaffin, R., Begosh, K. T., Daniels, J. R., & Marsh, K. L. (2012). Rocking to the beat: effects of music and partner’s movements on spontaneous interpersonal coordination. Journal of Experimental Psychology: General, 141(1), 49–53.CrossRefGoogle Scholar
  10. Dubus, G., & Bresin, R. (2013). A systematic review of mapping strategies for the sonification of physical quantities. PLoS ONE, 8(12), e82491.CrossRefPubMedCentralGoogle Scholar
  11. Dubus, G., & Bresin, R. (2014). Exploration and evaluation of a system for interactive sonification of elite rowing. Sports Engineering, 18, 29–41.CrossRefGoogle Scholar
  12. D’Ausilio, Novembre, G., Fadiga, L., & Keller, P. E. (2014). What can music tell us about social interaction? Trends in Cognitive Sciences, 19(3), 111–114.CrossRefGoogle Scholar
  13. Effenberg, A. O. (1996). Sonification – Ein akustisches Informationskonzept zur menschlichen Bewegung. Schorndorf: Hofmann.Google Scholar
  14. Effenberg, A. O. (2005). Movement sonification: effects on perception and action. IEEE Multimedia, 12(2), 53–59.CrossRefGoogle Scholar
  15. Effenberg, A. O., Fehse, U. & Weber, A. (2011). Movement sonification: Audiovisual benefits on motor learning. BIO Web of Conferences, 1, 1–5. doi:10.1051/bioconf/20110100022
  16. Effenberg, A. O., Fehse, U., Schmitz, G., Krueger, B., & Mechling, H. (2016). Movement sonification: effects on motor learning beyond rhythmic adjustments. Frontiers in Neuroscience, 10, 219. doi:10.3389/fnins.2016.00219.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hanson, J. V., Heron, J., & Whitaker, D. (2008). Recalibration of perceived time across sensory modalities. Experimental Brain Research, 185, 347–352.CrossRefPubMedGoogle Scholar
  18. Hermann, T., Hunt, A., & Neuhoff, J. (2011). The sonification handbook. Berlin: Logos.Google Scholar
  19. Heuer, H. (1988). Motorikforschung zwischen Elfenbeinturm und Sportplatz. In R. Daugs (Hrsg.), Neuere Aspekte der Motorikforschung. Aktuelle Motorikforschung in der Sportwissenschaft (S. 52–69). Bielefeld: Deutsche Vereinigung für Sportwissenschaft.Google Scholar
  20. Keller, P. E., Knoblich, G., & Repp, B. H. (2007). Pianist duet better when they play with themselves: on the possible role of action simulation in synchronization. Consciousness and Cognition, 16, 102–111.CrossRefPubMedGoogle Scholar
  21. Knoblich, G., & Flach, R. (2001). Predicting action effects: Interactions between perception and action. Psychological Science, 12, 467–472.CrossRefPubMedGoogle Scholar
  22. Knoblich, G., Seigerschmidt, E., Flach, R., & Prinz, W. (2002). Authorship effects in the prediction of handwriting strokes: evidence for action simulation during action perception. The Quaterly Journal of Experimental Psychology, 55(A), 1027–1046.Google Scholar
  23. Loras, H., Sigmundsson, H., Talcott, J. B., Öhberg, F., & Stensdotter, A. K. (2012). Timing continuous or discontinuous movements across effectors specified by different pacing modalities and intervals. Experimental Brain Research, 220, 335–347.CrossRefPubMedGoogle Scholar
  24. Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. Journal of Experimental Psychology: Human Perception and Performance, 31, 210–220.PubMedGoogle Scholar
  25. Macuga, K. L., & Frey, S. H. (2011). Selective responses in right inferior frontal and supramarginal gyri differentiate between observed movements of oneself vs. another. Neuropsychologia, 49, 1202–1207.CrossRefPubMedCentralGoogle Scholar
  26. Maes, P.-J., Leman, M., Palmer, C., & Wanderley, M. (2014). Action-based effects on music perception. Frontiers in Psychology, 4, 1008.CrossRefPubMedPubMedCentralGoogle Scholar
  27. McIntosh, G. C., Brown, S. H., Rice, R. R., & Thaut, M. H. (1997). Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 62(1), 22–26.CrossRefGoogle Scholar
  28. Miles, L. K., Nind, L. K., & Macrae, C. N. (2010). Moving memories; Behavioral synchrony and memory for self and others. Journal of Experimental Social Psychology, 46, 457–460.CrossRefGoogle Scholar
  29. Paladino, M.-P., Marrurega, M., Pavani, F., & Schubert, T. W. (2010). Synchronous multisensory stimulation blurs self-other boundaries. Psychological Science, 21(9), 1202–1207.CrossRefGoogle Scholar
  30. Pecenka, N., & Keller, P. (2011). The role of temporal prediction abilities in interpersonal sensorimotor synchronization. Experimental Brain Research, 3, 505–515.CrossRefGoogle Scholar
  31. Pizzera, A., & Hohmann, T. (2015). Acoustic information during motor control and action perception: a review. The Open Psychology Journal, 8(1), 183–191.CrossRefGoogle Scholar
  32. Repp, B. H. (2005). Sensorimotor synchronization: a review of the tapping literature. Psychonomic Bulletin & Review, 12, 969–992.CrossRefGoogle Scholar
  33. Repp, B. H., & Knoblich, G. (2004). Perceiving action identity: how pianists recognize their own performance. Psychological Science, 15(9), 604–609.CrossRefPubMedGoogle Scholar
  34. Repp, B. H., & Su, Y.-H. (2013). Sensorimotor synchronization: A review of recent research (2006–2012). Psychonomic Bulletin & Review, 20, 403–452.CrossRefGoogle Scholar
  35. Richardson, M. J., Marsh, K. L., Isenhower, R. W., Goodman, J. R., & Schmidt, R. C. (2007). Rocking together: dynamics of unintentional interpersonal coordination. Human Movement Science, 26(6), 867–891.CrossRefPubMedGoogle Scholar
  36. Rodger, M. W. M., & Craig, C. M. (2011). Timing movements to interval durations specified by discrete or continuous sounds. Experimental Brain Research, 214, 393–402.CrossRefPubMedGoogle Scholar
  37. Schaffert, N. (2011). Sonifikation des Bootsbeschleunigungs-Zeit-Verlaufs als akustisches Feedback im Rennrudern. Berlin: Logos.Google Scholar
  38. Schaffert, N., Mattes, K., & Effenberg, A. O. (2011). An investigation of online acoustic information for elite rowers in on-water training conditions. Journal of Human Sport and Exercise, 6(2), 392–405.CrossRefGoogle Scholar
  39. Scheef, L., Boecker, H., Daamen, M., Fehse, U., Landsberg, M. W., Granath, D. O., Mechling, H., & Effenberg, A. O. (2009). Multimodal audio-visual motion processing in area V5/MT: Evidence from an artificial class of audio-visual events. Brain Research, 1252, 94–104.CrossRefPubMedGoogle Scholar
  40. Schmitz, G., & Effenberg, A. O. (2012). Perceptual effects of auditory information about own and other movements. In Proceedings of the 18th Annual Conference on Auditory Display, Book of Abstracts (S. 89–94). Atlanta, USA: The International Community for Auditory Display.Google Scholar
  41. Schmitz, G., Mohammadi, B., Hammer, A., Heldmann, M., Samii, A., Münte, T. F., & Effenberg, A. O. (2013). Observation of sonified movements engages a basal ganglia frontocortical network. BMC Neuroscience, 14, 32. doi:10.1186/1471-2202-14-32.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Schmitz, G., & Effenberg, A. O. (im Druck). Sound Joined Actions in Rowing and Swimming. In: C. Meyer, & U. v. Wedelstaedt: Moving Bodies in Interaction – Interacting Bodies in Motion. John Benjamins Publishing Company: Amsterdam.Google Scholar
  43. Sebanz, N., & Knoblich, G. (2009). Prediction in joint action: what, when, and where. Topics in Cognitive Science, 1(2), 353–367.CrossRefPubMedGoogle Scholar
  44. Shadmehr, R., Smith, M. A., & Krakauer, J. W. (2010). Error correction, sensory prediction and adaptation in motor control. Annual Review of Neuroscience, 33, 89–108.CrossRefPubMedGoogle Scholar
  45. Sigrist, R., Rauter, G., Riener, R., & Wolf, P. (2013). Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychonomic Bulletin & Review, 20, 21–53.CrossRefGoogle Scholar
  46. Sigrist, R., Rauter, G., Marchal-Crespo, L., Riener, R., & Wolf, P. (2015). Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning. Experimental Brain Research, 233, 909–925.CrossRefPubMedGoogle Scholar
  47. Stanislav, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior, Research Methods, Instruments, & Computers, 31(1), 137–149.CrossRefGoogle Scholar
  48. Varlet, M., Marin, L., Issartel, J., Schmidt, R. C., & Bardy, B. G. (2012). Continuity of visual and auditory rhythms influences sensorimotor coordination. PloS One, 7(9), e44082.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Varni, G., Dubus, G., Oksanen, S., Volpe, G., Fabiani, M., Bresin, R., Kleimola, J., Välimaki, V., & Camurri, A. (2012). Interactive sonification of synchronization of motoric behavior in social active listening to music with mobile devices. Journal of Multimodal User Interfaces, 5(3), 157–173.CrossRefGoogle Scholar
  50. Vinken, P. M., Kröger, D., Fehse, U., Schmitz, G., Brock, H., & Effenberg, A. O. (2013). Auditory coding of human movement kinematics. Multisensory Research, 26(6), 533–552.CrossRefPubMedGoogle Scholar
  51. Zentgraf, K., & Munzert, J. (2014). Kognitives Training im Sport. Göttingen: Hogrefe.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institut für SportwissenschaftLeibniz Universität HannoverHannoverDeutschland

Personalised recommendations