Advertisement

Sportwissenschaft

, Volume 45, Issue 4, pp 173–189 | Cite as

Potenzielle Einflussfaktoren auf Pacing im ausdauersportlichen Wettkampf

  • Christian Thiel
  • Jos J. de Koning
  • Carl Foster
Übersichten

Zusammenfassung

Im Ausdauersport regulieren Athleten laufend ihre Leistung, um das bestmögliche Wettkampfergebnis zu erzielen, ohne die Integrität des Organismus zu gefährden. Diese Pacing genannte, bewusst und unbewusst ablaufende sowie auf einen Endpunkt bezogene Einteilung energetischer Reserven basiert auf disziplinspezifischen Erfahrungen in Verbindung mit der Wahrnehmung und Wirkung von Ermüdung. Pacing zeigt sich als Profil der Leistung oder Geschwindigkeit über die Wettkampfdistanz und unterliegt vielfältigen Einflussfaktoren. Aufbauend auf einer Kurzdarstellung von Grundlagen, Ermüdungsmechanismen, Pacing-Modellen und Methoden der Pacing-Analyse sondiert die vorliegende nichtsystematische Übersichtsarbeit den möglichen Einfluss von Leistungsfähigkeit und Geschlecht sowie unterschiedlicher Wettkampf- und Umgebungsbedingungen auf das Pacing-Verhalten von Freizeit- und Leistungssportlern im ausdauersportlichen Wettkampf. Aus 157 initial identifizierten Studien wurden 17 Untersuchungen eingeschlossen, die hauptsächlich das Pacing von Läufern und Radsportlern untersuchen. Spezifische Zusammenhänge zu Pacing-Mustern lassen sich u. a. für die Art der Fortbewegung, die Wettkampfrunde und das Kriterium für den Wettkampferfolg nachweisen. Athleten auf höherem Leistungsniveau und Frauen weisen mehrheitlich ein gleichmäßigeres Pacing auf als Athleten auf niedrigerem Leistungsniveau und Männer. Hohe Umgebungstemperaturen führen zu einem stärker positiv ausgeprägten Pacing. Die mit diesen Einflussfaktoren assoziierten Veränderungen des Pacing-Verhaltens gehen häufig mit veränderter Wettkampfleistung oder -zeit einher. Anhand von Vergleichen mit Modellen erfolgreichen Pacings und Empfehlungen aus der Leistungsphysiologie weisen die vorliegenden Resultate auf Potenziale zur Verbesserung des Pacing-Verhaltens hin und bieten Trainern und Athleten Anhaltspunkte für Training und Wettkampfvorbereitung. Allerdings sind vermutlich sowohl die in der Literatur empfohlenen Pacing-Strategien als auch die im Zusammenhang mit den genannten Einflussfaktoren beobachteten Veränderungen des Pacing-Verhaltens nur eingeschränkt generalisierbar.

Schlüsselwörter

Ausdauersport Leistungsregulation Pacing-Strategie Ermüdung Anstrengungsempfinden 

Factors potentially influencing pacing in endurance sports competition

Abstract

In competitive endurance sport, athletes permanently regulate their performance to achieve the best result without threatening organismic integrity. This conscious and subconscious allocation of energy reserves in relation to an endpoint is termed pacing and depends on sport-specific experience as well as on the perception and the effects of fatigue. Pacing can be visualized as the profile of performance or speed over the distance of a competition and is subject to multiple influencing factors. Following a short description of the foundations, fatigue mechanisms, models of pacing and methods to analyze pacing, the present non-systematic review explores the potential influence of athletic performance, gender and various competitive and environmental conditions on the pacing behavior of recreational and competitive athletes in endurance sports competition. Of the 157 studies identified initially, 17 studies were included most of which focused on pacing in runners and cyclists. Factors correlated to pacing patterns include, but are not limited to, the kind of locomotion, the round of competition and the criteria for competitive success. Athletes on a higher level of performance and women show a more even pacing than athletes on a lower level of performance and men. In high ambient temperatures, the pacing pattern is more positive. Most changes of pacing behavior associated with these factors also correlate with changes in competitive performance or time. When compared with models of successful pacing and with recommendations from exercise physiology, the present results indicate the potential to improve pacing behavior and offer evidence to coaches and athletes for training and preparation of competition. However, the pacing strategies recommended in the literature and the changes in pacing behavior associated with the factors mentioned, can presumably be generalized to a limited extent only.

Keywords

Endurance sport Regulation of energy expenditure Pacing strategy Fatigue Sense of exertion 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Thiel, J.J. de Koning und C. Foster geben an, dass kein Interessenkonflikt besteht.

Literatur

  1. Abbiss, C. R., & Laursen, P. B. (2008). Describing and understanding pacing strategies during athletic competition. Sports Medicine, 38, 239–252.CrossRefPubMedGoogle Scholar
  2. Abbiss, C. R., Burnett, A., Nosaka, K., Green, J. P., Foster, J. K., & Laursen, P. B. (2010). Effect of hot versus cold climates on power output, muscle activation, and perceived fatigue during a dynamic 100-km cycling trial. Journal of Sports Sciences, 28, 117–125.CrossRefPubMedGoogle Scholar
  3. Amann, M., & Secher, N. H. (2010). Point: Afferent feedback from fatigued locomotor muscles is an important determinant of endurance exercise performance. Journal of Applied Physiology, 108, 452–454.CrossRefPubMedGoogle Scholar
  4. Angus, S. D. (2014). Did recent world record marathon runners employ optimal pacing strategies? Journal of Sports Sciences, 32, 31–45.CrossRefPubMedGoogle Scholar
  5. Angus, S. D., & Waterhouse, B. J. (2011). Pacing strategy from high-frequency field data: More evidence for neural regulation? Medicine and Science in Sports and Exercise, 43, 2405–2411.CrossRefPubMedGoogle Scholar
  6. Atkinson, G., & Brunskill, A. (2000). Pacing strategies during a cycling time trial with simulated headwinds and tailwinds. Ergonomics, 43, 1449–1460.CrossRefPubMedGoogle Scholar
  7. Atkinson, G., Peacock, O., St Clair Gibson, A., & Tucker, R. (2007). Distribution of power output during cycling: Impact and mechanisms. Sports Medicine, 37, 647–667.CrossRefPubMedGoogle Scholar
  8. Aughey, R. J. (2010). Australian football player work rate: Evidence of fatigue and pacing? International Journal of Sports Physiology and Performance, 5, 394–405.PubMedGoogle Scholar
  9. Baron, B., Moullan, F., Deruelle, F., & Noakes, T. D. (2011). The role of emotions on pacing strategies and performance in middle and long duration sport events. British Journal of Sports Medicine, 45, 511–517.CrossRefPubMedGoogle Scholar
  10. Bernard, T., Hausswirth, C., Le Meur, Y., Bignet, F., Dorel, S., & Brisswalter, J. (2009). Distribution of power output during the cycling stage of a Triathlon World Cup. Medicine and Science in Sports and Exercise, 41, 1296–1302.CrossRefPubMedGoogle Scholar
  11. Borg, G. (1970). Perceived exertion as an indicator of somatic stress. Scandinavian Journal of Rehabilitation Medicine, 2, 92–98.PubMedGoogle Scholar
  12. Brown, M. R., Delau, S., & Desgorces, F. D. (2010). Effort regulation in rowing races depends on performance level and exercise mode. Journal of Science and Medicine in Sport, 13, 613–617.CrossRefPubMedGoogle Scholar
  13. Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269–298.CrossRefPubMedGoogle Scholar
  14. Corbett, J. (2009). An analysis of the pacing strategies adopted by elite athletes during track cycling. International Journal of Sports Physiology and Performance, 4, 195–205.PubMedGoogle Scholar
  15. Edwards, A. M., & Noakes, T. D. (2009). Dehydration: Cause of fatigue or sign of pacing in elite soccer? Sports Medicine, 39, 1–13.CrossRefPubMedGoogle Scholar
  16. Edwards, A. M., & Polman, R. C. J. (2013). Pacing and awareness: Brain regulation of physical activity. Sports Medicine, 43, 1057–1064.CrossRefPubMedGoogle Scholar
  17. Ely, M. R., Martin, D. E., Cheuvront, S. N., & Montain, S. J. (2008). Effect of ambient temperature on marathon pacing is dependent on runner ability. Medicine and Science in Sports and Exercise, 40, 1675–1680.CrossRefPubMedGoogle Scholar
  18. Enoka, R. M., & Duchateau, J. (2008). Muscle fatigue: What, why and how it influences muscle function. The Journal of Physiology, 586, 11–23.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Esteve-Lanao, J., Larumbe-Zabala, E., Dabab, A., Alcocer-Gamboa, A., & Ahumada, F. (2014). Running world cross country championships: A unique model for pacing study. International Journal of Sports Physiology and Performance, 9, 1000–1005.CrossRefPubMedGoogle Scholar
  20. Faulkner, J., Parfitt, G., & Eston, R. (2008). The rating of perceived exertion during competitive running scales with time. Psychophysiology, 45, 977–985.CrossRefPubMedGoogle Scholar
  21. Foster, C., de Koning, J. J., & Thiel, C. (2014). Evolutionary pattern of improved one-mile running performance. International Journal of Sports Physiology and Performance, 9, 715–719.CrossRefPubMedGoogle Scholar
  22. Foster, C., Snyder, A. C., Thompson, N. N., Green, M. A., Foley, M., & Schrager, M. (1993). Effect of pacing strategy on cycle time trial performance. Medicine and Science in Sports and Exercise, 25, 383–388.PubMedGoogle Scholar
  23. Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews, 81, 1725–1789.PubMedGoogle Scholar
  24. Garland, S. W. (2005). An analysis of the pacing strategy adopted by elite competitors in 2000 m rowing. British Journal of Sports Medicine, 39, 39–42.CrossRefPubMedCentralPubMedGoogle Scholar
  25. Gray, A. J., & Jenkins, D. G. (2010). Match analysis and the physiological demands of Australian football. Sports Medicine, 40, 347–360.CrossRefPubMedGoogle Scholar
  26. Hanley, B. (2014). Senior men’s pacing profiles at the IAAF World Cross Country Championships. Journal of Sports Sciences, 32, 1060–1065.CrossRefPubMedGoogle Scholar
  27. Hausswirth, C., & Brisswalter, J. (2008). Strategies for improving performance in long duration events: Olympic distance triathlon. Sports Medicine, 38, 881–891.CrossRefPubMedGoogle Scholar
  28. Hausswirth, C., Le Meur, Y., Couturier, A., Bernard, T., & Brisswalter, J. (2009). Accuracy and repeatability of the Polar RS 800sd to evaluate stride rate and running speed. International Journal of Sports Medicine, 30, 354–359.CrossRefPubMedGoogle Scholar
  29. Hausswirth, C., Le Meur, Y., Bieuzen, F., Brisswalter, J., & Bernard, T. (2010). Pacing strategy during the initial phase of the run in triathlon: Influence on overall performance. European Journal of Applied Physiology, 108, 1115–1123.CrossRefPubMedGoogle Scholar
  30. Hettinga, F. J., de Koning, J. J., Broersen, F. T., van Geffen, P., & Foster, C. (2006). Pacing strategy and the occurrence of fatigue in 4000-m cycling time trials. Medicine and Science in Sports and Exercise, 38, 1484–1491.CrossRefPubMedGoogle Scholar
  31. Hettinga, F. J., Koning, J. J. de, Meijer, E., Teunissen, L., & Foster, C. (2007). Biodynamics. Effect of pacing strategy on energy expenditure during a 1500-m cycling time trial. Medicine and Science in Sports and Exercise, 39, 2212–2218.CrossRefPubMedGoogle Scholar
  32. Hettinga, F. J., de Koning, J. J., Schmidt, L. J. I., Wind, N. A. C., Macintosh, B. R., & Foster, C. (2011). Optimal pacing strategy: From theoretical modelling to reality in 1500-m speed skating. British Journal of Sports Medicine, 45, 30–35.CrossRefPubMedGoogle Scholar
  33. Hettinga, F. J., Koning, J. J. de, Hulleman, M., & Foster, C. (2012). Relative importance of pacing strategy and mean power output in 1500-m self-paced cycling. British Journal of Sports Medicine, 46, 30–35.CrossRefPubMedGoogle Scholar
  34. Hoos, O., Boeselt, T., Steiner, M., Hottenrott, K., & Beneke, R. (2014). Long-range correlations and complex regulation of pacing in long-distance road racing. International Journal of Sports Physiology and Performance, 9, 544–553.CrossRefPubMedGoogle Scholar
  35. Hulleman, M., Koning, J. J. de, Hettinga, F. J., & Foster, C. (2007). The effect of extrinsic motivation on cycle time trial performance. Medicine and Science in Sports and Exercise, 39, 709–715.CrossRefPubMedGoogle Scholar
  36. Jones, H. S., Williams, E. L., Bridge, C. A., Marchant, D., Midgley, A. W., Micklewright, D., & Mc Naughton, L. R. (2013). Physiological and psychological effects of deception on pacing strategy and performance: A review. Sports Medicine, 43, 1243–1257.CrossRefPubMedGoogle Scholar
  37. Joseph, T., Johnson, B., Battista, R. A., Wright, G., Dodge, C., Porcari, J. P., de Koning, J. J., & Foster, C. (2008). Perception of fatigue during simulated competition. Medicine and Science in Sports and Exercise, 40, 381–386.CrossRefPubMedGoogle Scholar
  38. Knicker, A. J., Renshaw, I., Oldham, A. R. H., & Cairns, S. P. (2011). Interactive processes link the multiple symptoms of fatigue in sport competition. Sports Medicine, 41, 307–328.CrossRefPubMedGoogle Scholar
  39. de Koning, J. J., Foster, C., Bakkum, A., Kloppenburg, S., Thiel, C., Joseph, T., Cohen, J., & Porcari, J. P. (2011a). Regulation of pacing strategy during athletic competition. PloS ONE Biology, 6, e15863.CrossRefGoogle Scholar
  40. de Koning, J. J., Foster, C., Lucia, A., Bobbert, M. F., Hettinga, F. J., & Porcari, J. P. (2011b). Using modeling to understand how athletes in different disciplines solve the same problem: Swimming versus running versus speed skating. International Journal of Sports Physiology and Performance, 6, 276–280.PubMedGoogle Scholar
  41. Le Meur, Y., Hausswirth, C., Dorel, S., Bignet, F., Brisswalter, J., & Bernard, T. (2009). Influence of gender on pacing adopted by elite triathletes during a competition. European Journal of Applied Physiology, 106, 535–545.CrossRefPubMedGoogle Scholar
  42. Lima-Silva, A. E., Bertuzzi, R. C. M., Pires, F. O., Barros, R. V., Gagliardi, J. F., Hammond, J., Kiss, M. A., & Bishop, D. J. (2010). Effect of performance level on pacing strategy during a 10-km running race. European Journal of Applied Physiology, 108, 1045–1053.CrossRefPubMedGoogle Scholar
  43. Manore, M., Meeusen, R., Roelands, B., Moran, S., Popple, A. D., Naylor, M. J., Burke, L. M., Stear, S. J., & Castell, L. M. (2011). BJSM reviews: A-Z of nutritional supplements: Dietary supplements, sports nutrition foods and ergogenic aids for health and performance – Part 16. British Journal of Sports Medicine, 45, 73–74.CrossRefPubMedGoogle Scholar
  44. March, D. S., Vanderburgh, P. M., Titlebaum, P. J., & Hoops, M. L. (2011). Age, sex, and finish time as determinants of pacing in the marathon. Journal of Strength and Conditioning Research, 25, 386–391.CrossRefPubMedGoogle Scholar
  45. Marcora, S. (2007). Entia non sunt multiplicanda praeter necessitatem. The Journal of Physiology, 578, 371.CrossRefGoogle Scholar
  46. Marcora, S. (2010). Counterpoint: Afferent feedback from fatigued locomotor muscles is not an important determinant of endurance exercise performance. Journal of Applied Physiology, 108, 454–456.CrossRefPubMedGoogle Scholar
  47. Marcora, S. M., Bosio, A., & Morree, H. M. de (2008). Locomotor muscle fatigue increases cardiorespiratory responses and reduces performance during intense cycling exercise independently from metabolic stress. American Journal of Physiology, 294, R874–83.PubMedGoogle Scholar
  48. McKenna, M. J., & Hargreaves, M. (2008). Resolving fatigue mechanisms determining exercise performance: Integrative physiology at its finest! Journal of Applied Physiology, 104, 286–287.CrossRefPubMedGoogle Scholar
  49. Millet, G. Y. (2011). Can neuromuscular fatigue explain running strategies and performance in ultra-marathons?: The flush model. Sports Medicine, 41, 489–506.CrossRefPubMedGoogle Scholar
  50. Montain, S. J., Ely, M. R., & Cheuvront, S. N. (2007). Marathon performance in thermally stressing conditions. Sports Medicine, 37, 320–323.CrossRefPubMedGoogle Scholar
  51. Muehlbauer, T., & Melges, T. (2011). Pacing patterns in competitive rowing adopted in different race categories. Journal of Strength and Conditioning Research, 25, 1293–1298.CrossRefPubMedGoogle Scholar
  52. Muehlbauer, T., Panzer, S., & Schindler, C. (2010). Pacing pattern and speed skating performance in competitive long-distance events. Journal of Strength and Conditioning Research, 24, 114–119.CrossRefPubMedGoogle Scholar
  53. Mytton, G. J., Archer, D. T., Thompson, K. G., Renfree, A., & St Clair Gibson, A. (2013). Validity and reliability of a 1500-m lap-time collection method using public videos. International Journal of Sports Physiology and Performance, 8, 692–694.PubMedGoogle Scholar
  54. Noakes, T. D. (1997). 1996 J.B. Wolffe Memorial Lecture. Challenging beliefs: ex Africa semper aliquid novi. Medicine and Science in Sports and Exercise, 29, 571–590.CrossRefPubMedGoogle Scholar
  55. Noakes, T. D. (2008). Rating of perceived exertion as a predictor of the duration of exercise that remains until exhaustion. British Journal of Sports Medicine, 42, 623–624.PubMedGoogle Scholar
  56. Noakes, T. D. (2011). Time to move beyond a brainless exercise physiology: The evidence for complex regulation of human exercise performance. Applied Physiology, Nutrition, and Metabolism, 36, 23–35.CrossRefPubMedGoogle Scholar
  57. Peiffer, J. J., & Abbiss, C. R. (2011). Influence of environmental temperature on 40 km cycling time-trial performance. International Journal of Sports Physiology and Performance, 6, 208–220.PubMedGoogle Scholar
  58. Racinais, S., Périard, J. D., Karlsen, A., & Nybo, L. (2014). Effect of Heat and Heat-Acclimatization on Cycling Time-Trial Performance and Pacing. Medicine and Science in Sports and Exercise, 47, 601-606.Google Scholar
  59. Renfree, A., & St Clair Gibson, A. (2013). Influence of different performance levels on pacing strategy during the Women’s World Championship marathon race. International Journal of Sports Physiology and Performance, 8, 279–285.PubMedGoogle Scholar
  60. Roelands, B., & Meeusen, R. (2010). Alterations in central fatigue by pharmacological manipulations of neurotransmitters in normal and high ambient temperature. Sports Medicine, 40, 229–246.CrossRefPubMedGoogle Scholar
  61. Roelands, B., de Koning, J. J., Foster, C., Hettinga, F., & Meeusen, R. (2013). Neurophysiological determinants of theoretical concepts and mechanisms involved in pacing. Sports Medicine, 43, 301–311.CrossRefPubMedGoogle Scholar
  62. Sandals, L. E., Wood, D. M., Draper, S. B., & James, D. V. B. (2006). Influence of pacing strategy on oxygen uptake during treadmill middle-distance running. International Journal of Sports Medicine, 27, 37–42.CrossRefPubMedGoogle Scholar
  63. Santos-Lozano, A., Collado, P. S., Foster, C., Lucia, A., & Garatachea, N. (2014). Influence of sex and level on marathon pacing strategy. Insights from the New York City race. International Journal of Sports Medicine, 35, 933–938.CrossRefPubMedGoogle Scholar
  64. Saziorski, W. M., Aljeschinski, S. J., Jakunin, N. A., & Friedrich, G. (1987). Biomechanische Grundlagen der Ausdauer. Berlin: Sportverlag Berlin.Google Scholar
  65. Shephard, R. J. (2009). Is it Time to Retire the ‚Central Governor‘? Sports Medicine, 39, 709–721.CrossRefPubMedGoogle Scholar
  66. Smits, B. L. M., Pepping, G. -J., & Hettinga, F. J. (2014). Pacing and Decision Making in Sport and Exercise: The Roles of Perception and Action in the Regulation of Exercise Intensity. Sports Medicine, 44, 763–775.CrossRefPubMedGoogle Scholar
  67. St Clair Gibson, A., & Noakes, T. D. (2004). Evidence for complex system integration and dynamic neural regulation of skeletal muscle recruitment during exercise in humans. British Journal of Sports Medicine, 38, 797–806.CrossRefPubMedGoogle Scholar
  68. St Clair Gibson, A., Lambert, E. V., Rauch, L. H. G., Tucker, R., Baden, D. A., Foster, C., & Noakes, T. D. (2006). The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sports Medicine, 36, 705–722.CrossRefPubMedGoogle Scholar
  69. St Clair Gibson, A., de Koning, J. J., Thompson, K. G., Roberts, W. O., Micklewright, D., Raglin, J., & Foster, C. (2013). Crawling to the finish line: Why do endurance runners collapse? Implications for understanding of mechanisms underlying pacing and fatigue. Sports Medicine, 43, 413–424.CrossRefPubMedGoogle Scholar
  70. Stølen, T., Chamari, K., Castagna, C., & Wisløff, U. (2005). Physiology of soccer: An update. Sports Medicine, 35, 501–536.CrossRefPubMedGoogle Scholar
  71. Thiel, C., Foster, C., Banzer, W., & de Koning, J. J. (2012). Pacing in Olympic track races: Competitive tactics versus best performance strategy. Journal of Sports Sciences, 30, 1107–1115.CrossRefPubMedGoogle Scholar
  72. Thomas, K., Stone, M. R., Thompson, K. G., Gibson, A. S. C., & Ansley, L. (2011). The effect of self- even- and variable-pacing strategies on the physiological and perceptual response to cycling. European Journal of Applied Physiology, 112, 3069–3078.CrossRefPubMedGoogle Scholar
  73. Thompson, K. G., MacLaren, D. P., Lees, A., & Atkinson, G. (2003). The effect of even, positive and negative pacing on metabolic, kinematic and temporal variables during breaststroke swimming. European Journal of Applied Physiology, 88, 438–443.CrossRefPubMedGoogle Scholar
  74. Townshend, A. D., Worringham, C. J., & Stewart, I. B. (2010). Spontaneous pacing during overground hill running. Medicine and Science in Sports and Exercise, 42, 160–169.CrossRefPubMedGoogle Scholar
  75. Trubee, N. W., Vanderburgh, P. M., Diestelkamp, W. S., & Jackson, K. J. (2014). Effects of heat stress and sex on pacing in marathon runners. Journal of Strength and Conditioning Research, 28, 1673–1678.CrossRefPubMedGoogle Scholar
  76. Tucker, R. (2009). The anticipatory regulation of performance: The physiological basis for pacing strategies and the development of a perception-based model for exercise performance. British Journal of Sports Medicine, 43, 392–400.CrossRefPubMedGoogle Scholar
  77. Tucker, R., Bester, A., Lambert, E. V., Noakes, T. D., Vaughan, C. L., & St Clair Gibson, A. (2006a). Non-random fluctuations in power output during self-paced exercise. British Journal of Sports Medicine, 40, 912–917.CrossRefPubMedCentralPubMedGoogle Scholar
  78. Tucker, R., Lambert, M. I., & Noakes, T. D. (2006b). An analysis of pacing strategies during men’s world-record performances in track athletics. International Journal of Sports Physiology and Performance, 1, 233–245.PubMedGoogle Scholar
  79. Tucker, R., Kayser, B., Rae, E., Raunch, L., Bosch, A., & Noakes, T. (2007). Hyperoxia improves 20 km cycling time trial performance by increasing muscle activation levels while perceived exertion stays the same. European Journal of Applied Physiology, 101, 771–781.CrossRefPubMedGoogle Scholar
  80. Ulmer, H. V. (1996). Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experientia, 52, 416–420.CrossRefPubMedGoogle Scholar
  81. Weir, J. P., Beck, T. W., Cramer, J. T., & Housh, T. J. (2006). Is fatigue all in your head? A critical review of the central governor model. British Journal of Sports Medicine, 40, 573–586.CrossRefPubMedCentralPubMedGoogle Scholar
  82. Wu, S. S., Peiffer, J. J., Brisswalter, J., Nosaka, K., & Abbiss, C. R. (2014). Factors influencing pacing in triathlon. Open Access Journal of Sports Medicine, 5, 223–234.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christian Thiel
    • 1
    • 2
  • Jos J. de Koning
    • 3
    • 4
  • Carl Foster
    • 3
    • 4
  1. 1.Studienbereich PhysiotherapieHochschule für GesundheitBochumDeutschland
  2. 2.Abteilung Sportmedizin, Institut für SportwissenschaftGoethe-UniversitätFrankfurt/MainDeutschland
  3. 3.Research Institute MOVE, Faculty of Human Movement SciencesVU UniversityAmsterdamNiederlande
  4. 4.Department of Exercise and Sport ScienceUniversity of Wisconsin-La CrosseLa CrosseUSA

Personalised recommendations