Advertisement

Sportwissenschaft

, Volume 45, Issue 1, pp 1–9 | Cite as

Akzelerometrie zur Erfassung körperlicher Aktivität

Empfehlungen zur Methodik
  • Lars Gabrys
  • Christian Thiel
  • Alexander Tallner
  • Britta Wilms
  • Carsten Müller
  • Daniela Kahlert
  • Darko Jekauc
  • Fabienne Frick
  • Holger Schulz
  • Ole Sprengeler
  • Stefan Hey
  • Susanne Kobel
  • Lutz Vogt
Hauptbeiträge

Zusammenfassung

Die Akzelerometrie ist als objektives Messverfahren zur Erfassung körperlicher Aktivität im Feld mit guten psychometrischen Eigenschaften und Anwendbarkeit auch bei großen Stichproben international etabliert. Akzelerometer zeichnen Intensität und Dauer ein- oder mehraxialer Beschleunigungen auf. Umfänge leichter, moderater und intensiver körperlicher Aktivitäten sowie Zeiten der Inaktivität können mit Hilfe von Cut-point-Modellen abgegrenzt, sowie der Energieumsatz auf Basis von Regressionsmodellen geschätzt werden. Allerdings bleibt die Vergleichbarkeit von Ergebnissen aufgrund unterschiedlicher Modelle, Trageprotokolle, Kalibrationsverfahren und Ergebnisdarstellungen schwierig. Die vorliegenden Empfehlungen, Perspektiven und Limitationen der Messmethodik wurden unter Beteiligung aller Autoren erarbeitet und im Konsens verabschiedet.

Aktuell kann kein Gerätemodell pauschal empfohlen werden, da die Wahl des Gerätes von Forschungsfrage, -design und Zielgruppe abhängt. Für ein möglichst objektives Abbild des habituellen Bewegungsverhaltens werden ein Messzeitraum von mindestens 7 Tagen inklusive einem Wochenendtag und eine Tragedauer von mindestens 10 h pro Tag bei Erwachsenen empfohlen. Zur Vermeidung von Verzerrungen aufgrund aggregierter Daten sollten möglichst kurze Epochenlängen gewählt bzw. nicht vorprozessierte Rohwerte gespeichert werden. Für Erwachsene gilt das Cut-point-Modell von Freedson et al. (1998) zur Bestimmung unterschiedlicher Aktivitätskategorien als etabliert. Methodische Limitationen bestehen insbesondere bei der Erfassung von Aktivitäten mit geringer oder sehr hoher Beschleunigung des observierten Körpersegments, wie Fahrradfahren oder Krafttraining, und bei der Berechnung des Energieumsatzes auf Basis linearer Regressionsmodelle.

Schlüsselwörter

Akzelerometrie Messverfahren Standardisierung Konsensusstatement Körperliche Aktivität 

Accelerometry for measuring physical activity

Recommendations on methods

Abstract

Accelerometry is an internationally well-established procedure for the objective measurement of habitual physical activity in large samples under free-living conditions and shows good psychometric properties. Accelerometers register the intensity and duration of single or multiaxial body acceleration. The duration of light, moderate and vigorous physical activity as well as sedentary time is calculated based on cutpoint models and energy expenditure is estimated by linear regression models. Nevertheless, the comparability of results between studies remains limited due to the use of different devices, protocols, calibration procedures and presentation of results. The recommendations, perspectives and limitations of accelerometer use described here have been collated and agreed by all members of the consensus group.

Currently, there is no evidence for recommending a specific accelerometer model as model selection depends on the study question, target groups and study design. To obtain objective information on habitual physical activity behavior, a minimum wear time of 7 consecutive days with a minimum of 10 h/day including one weekend day is recommended. To avoid bias the selected epoch length should be as short as possible or raw data should be recorded. For adults, the cutpoint model of Freedson et al. (1998) for estimating different activity categories is well accepted. Methodological limitations include the recognition of activities with limited body acceleration, such as bicycling or weight training and the estimation of energy expenditure using only linear regression models.

Keywords

Accelerometry Measuring Standardization Consensus statement Physical activity 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

L. Gabrys, C. Thiel, A. Tallner, B. Wilms, C. Müller, D. Kahlert, D. Jekauc, F. Frick, H. Schulz, O. Sprengler, S. Hey, S. Kobel und L. Vogt geben an, dass kein Interessenkonflikt besteht.

Literatur

  1. Ainslie, P., Reilly, T., & Westerterp, K. (2003). Estimating human energy expenditure: A review of techniques with particular reference to doubly labelled water. Sports Medicine (Auckland, N.Z.), 33(9), 683–698.CrossRefGoogle Scholar
  2. Anastasopoulou, P., Tubic, M., Schmidt, S., Neumann, R., Woll, A., Härtel, S., et al. (2014). Validation and comparison of two methods to assess human energy expenditure during free-living activities. PLoS One, 9(2), e90606.CrossRefGoogle Scholar
  3. Arvidsson, D., Slinde, F., Larsson, S., & Hulthén, L. (2007). Energy cost of physical activities in children: Validation of SenseWear Armband. Medicine and Science in Sports and Exercise, 39(11), 2076–2084.CrossRefPubMedGoogle Scholar
  4. Assah, F. K., Ekelund, U., Brage, S., Wright, A., Mbanya, J. C., & Wareham, N. J. (2011). Accuracy and validity of a combined heart rate and motion sensor for the measurement of free-living physical activity energy expenditure in adults in Cameroon. International Journal of Epidemiology, 40(1), 112–120.CrossRefPubMedGoogle Scholar
  5. Berntsen, S., Hageberg, R., Aandstad, A., Mowinckel, P., Anderssen, S. A., Carlsen, K.-H., et al. (2010). Validity of physical activity monitors in adults participating in free-living activities. British Journal of Sports Medicine, 44(9), 657–664.CrossRefPubMedGoogle Scholar
  6. Bock, F. de, Menze, J., Becker, S., Litaker, D., Fischer, J., & Seidel, I. (2010). Combining accelerometry and HR for assessing preschoolers’ physical activity. Medicine and Science in Sports and Exercise, 42(12), 2237–2243.CrossRefPubMedGoogle Scholar
  7. Bonomi, A. G., Plasqui, G., Goris, A. H. C., & Westerterp, K. R. (2009). Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer. Journal of Applied Physiology (Bethesda, Md.: 1985), 107(3), 655–661.CrossRefGoogle Scholar
  8. Bornstein, D. B., Beets, M. W., Byun, W., & McIver, K. (2011). Accelerometer-derived physical activity levels of preschoolers: A meta-analysis. Journal of Science and Medicine in Sport, 14(6), 504–511.CrossRefPubMedGoogle Scholar
  9. Bort-Roig, J., Gilson, N. D., Puig-Ribera, A., Contreras, R. S., & Trost, S. G. (2014). Measuring and influencing physical activity with smartphone technology: A systematic review. Sports Medicine, 44(5), 671–686.CrossRefPubMedGoogle Scholar
  10. Brage, S., Brage, N., Franks, P. W., Ekelund, U., & Wareham, N. J. (2005). Reliability and validity of the combined heart rate and movement sensor Actiheart. European Journal of Clinical Nutrition, 59(4), 561–570.CrossRefPubMedGoogle Scholar
  11. Busse, M. E., van Deursen, R. W., & Wiles, C. M. (2009). Real-life step and activity measurement: Reliability and validity. Journal of Medical Engineering & Technology, 33(1), 33–41.CrossRefGoogle Scholar
  12. Butte, N. F., Ekelunnd, U., & Westerterp, K. R. (2012). Assessing physical activity using wearable monitors: Measures of physical activity. Medicine and Science in Sports and Exercise, 44(1 Suppl. 1), 5–12.CrossRefGoogle Scholar
  13. Calabró, M. A., Welk, G. J., & Eisenmann, J. C. (2009). Validation of the SenseWear Pro Armband algorithms in children. Medicine and Science in Sports and Exercise, 41(9), 1714–1720.CrossRefPubMedGoogle Scholar
  14. Campbell, N., Prapavessis, H., Gray, C., McGowan, E., Rush, E., & Maddison, R. (2012). The Actiheart in adolescents: A doubly labelled water validation. Pediatric Exercise Science, 24(4), 589–602.PubMedGoogle Scholar
  15. Carr, L. J., & Mahar, M. T. (2012). Accuracy of intensity and inclinometer output of three activity monitors for identification of sedentary behavior and light-intensity activity. Journal of Obesity, 2012(1), 1–9.CrossRefGoogle Scholar
  16. Casiraghi, F., Lertwattanarak, R., Luzi, L., Chavez, A. O., Davalli, A. M., Naegelin, T., & Folli, F. (2013). Energy expenditure evaluation in humans and non-human primates by SenseWear Armband. Validation of energy expenditure evaluation by SenseWear Armband by direct comparison with indirect calorimetry. PloS One, 8(9), e73651.CrossRefGoogle Scholar
  17. Chan, C. B., Ryan, D. A. J., & Tudor-Locke, C. (2006). Relationship between objective measures of physical activity and weather: A longitudinal study. International Journal of Behavioral Nutrition and Physical Activity, 3(1), 21.CrossRefPubMedCentralPubMedGoogle Scholar
  18. Chen, K. Y., & Bassett, D. R. (2005). The technology of accelerometry-based activity monitors: Current and future. Medicine and Science in Sports and Exercise, 37(11 Suppl.), 490–500.CrossRefGoogle Scholar
  19. Colley, R. C., & Tremblay, M. S. (2011). Moderate and vigorous physical activity intensity cut-points for the Actical accelerometer. Journal of Sports Sciences, 29(8), 783–789.CrossRefPubMedGoogle Scholar
  20. Crouter, S. E., & Bassett, D. R. (2008). A new 2-regression model for the Actical accelerometer. British Journal of Sports Medicine, 42(3), 217–224.CrossRefPubMedGoogle Scholar
  21. Crouter, S. E., Dellavalle, D. M., Horton, M., Haas, J. D., Frongillo, E. A., & Bassett, D. R. (2011). Validity of the Actical for estimating free-living physical activity. European Journal of Applied Physiology, 111(7), 1381–1389.CrossRefPubMedCentralPubMedGoogle Scholar
  22. Crouter, S. E., Horton, M., & Basett, D. R. (2012). Use of a two-regression model for estimating energy expenditure in children. Medicine and Science in Sports and Exercise, 44(6), 1177–1185.CrossRefPubMedCentralPubMedGoogle Scholar
  23. Ebner-Priemer, U. W., Koudela, S., Mutz, G., & Kanning, M. (2013). Interactive multimodal ambulatory monitoring to investigate the association between physical activity and affect. Frontiers in Psychology, 3, 596.CrossRefPubMedCentralPubMedGoogle Scholar
  24. Edwardson, C. L., & Gorely, T. (2010). Epoch length and its effect on physical activity intensity. Medicine and Science in Sports and Exercise, 42(5), 928–934.CrossRefPubMedGoogle Scholar
  25. Esliger, D. W., Probert, A., Connor Gorber, S., Bryan, S., Laviolette, M., & Tremblay, M. S. (2007). Validity of the Actical accelerometer step-count function. Medicine and Science in Sports and Exercise, 39(7), 1200–1204.CrossRefPubMedGoogle Scholar
  26. Esliger, D. W., & Tremblay, M. S. (2006). Technical reliability assessment of three accelerometer models in a mechanical setup. Medicine and Science in Sports and Exercise, 38(12), 2173–2181.CrossRefPubMedGoogle Scholar
  27. Evenson, K. R., Catellier, D. J., Gill, K., Ondrak, K. S., & McMurray, R. G. (2008). Calibration of two objective measures of physical activity for children. Journal of Sports Sciences, 26(14), 1557–1565.CrossRefPubMedGoogle Scholar
  28. Fokkenrood, H. J. P., Verhofstad, N., van den Houten, M. M. L., Lauret, G. J., Wittens, C., Scheltinga, M. R. M., et al. (2014). Physical activity monitoring in patients with peripheral arterial disease: Validation of an activity monitor. European journal of vascular and endovascular surgery: The official Journal of the European Society for Vascular Surgery, 48(2), 194–200.CrossRefGoogle Scholar
  29. Freedson, P. S., Lyden, K., Kozey-Keadle, S., & Staudenmayer, J. (2011). Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: Validation on an independent sample. Journal of Applied Physiology (Bethesda, Md.: 1985), 111(6), 1804–1812.Google Scholar
  30. Freedson, P. S., Melanson, E., & Sirard, J. (1998). Calibration of the Computer Science and Applications, Inc. accelerometer. Medicine and Science in Sports and Exercise, 30(5), 777–781.CrossRefPubMedGoogle Scholar
  31. Gabrys, L., Thiel, C., & Vogt, L. (2013). Konsensus-Workshop: Messmethodik Akzelerometrie. Bewegungstherapie und Gesundheitssport, 29, 185.Google Scholar
  32. Garatachea, N., Torres Luque, G., & González Gallego, J. (2010). Physical activity and energy expenditure measurements using accelerometers in older adults. Nutrición hospitalaria, 25(2), 224–230.PubMedGoogle Scholar
  33. Grant, P. M., Ryan, C. G., Tigbe, W. W., & Granat, M. H. (2006). The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. British Journal of Sports Medicine, 40(12), 992–997.CrossRefPubMedCentralPubMedGoogle Scholar
  34. Griffiths, L. J., Cortina-Borja, M., Sera, F., Pouliou, T., Geraci, M., Rich, C., & Dezateux, C. (2013). How active are our children? Findings from the Millennium Cohort Study. BMJ Open, 3(8), e002893.CrossRefPubMedCentralPubMedGoogle Scholar
  35. Groot, S. de, & Nieuwenhuizen, M. G. (2013). Validity and reliability of measuring activities, movement intensity and energy expenditure with the DynaPort MoveMonitor. Medical Engineering & Physics, 35(10), 1499–1505.CrossRefGoogle Scholar
  36. Guinhouya, B. C., Samouda, H., & Beaufort, C. de. (2013). Level of physical activity among children and adolescents in Europe: A review of physical activity assessed objectively by accelerometry. Public Health, 127(4), 301–311.CrossRefPubMedGoogle Scholar
  37. Haeuber, E., Shaughnessy, M., Forrester, L. W., Coleman, K. L., & Macko, R. F. (2004). Accelerometer monitoring of home- and community-based ambulatory activity after stroke. Archives of Physical Medicine and Rehabilitation, 85(12), 1997–2001.CrossRefPubMedGoogle Scholar
  38. Hagströmer, M., Oja, P., & Sjöström, M. (2007). Physical activity and inactivity in an adult population assessed by accelerometry. Medicine and Science in Sports and Exercise, 39(9), 1502–1508.CrossRefPubMedGoogle Scholar
  39. Hagströmer, M., Troiano, R. P., Sjöström, M., & Berrigan, D. (2010). Levels and patterns of objectively assessed physical activity–A comparison between Sweden and the United States. American Journal of Epidemiology, 171(10), 1055–1064.CrossRefPubMedGoogle Scholar
  40. Hänggi, J. M., Phillips, L. R. S., & Rowlands, A. V. (2013). Validation of the GT3X ActiGraph in children and comparison with the GT1M ActiGraph. Journal of science and Medicine in Sport, 16(1), 40–44.CrossRefPubMedGoogle Scholar
  41. Harrington, D. M., Welk, G. J., & Donnelly, A. E. (2011). Validation of MET estimates and step measurement using the ActivPAL physical activity logger. Journal of Sports Sciences, 29(6), 627–633.CrossRefPubMedGoogle Scholar
  42. Härtel, S., Gnam, J.-P., Löffler, S., & Bös, K. (2011). Estimation of energy expenditure using accelerometers and activity-based energy models—validation of a new device. European Review of Aging and Physical Activity, 8(2), 109–114.CrossRefGoogle Scholar
  43. Hartmann, A., Luzi, S., Murer, K., de Bie, R. A., & de Bruin, E. D. (2009). Concurrent validity of a trunk tri-axial accelerometer system for gait analysis in older adults. Gait & Posture, 29(3), 444–448.CrossRefGoogle Scholar
  44. Haskell, W. L. (2012). Physical activity by self-report: A brief history and future issues. Journal of Physical Activity & Health, 9(Suppl. 1), 5–10.Google Scholar
  45. Hawkins, M. S., Storti, K. L., Richardson, C. R., King, W. C., Strath, S. J., Holleman, R. G., et al. (2009). Objectively measured physical activity of USA adults by sex, age, and racial/ethnic groups: A cross-sectional study. International Journal of Behavioral Nutrition and Physical Activity, 6(1), 31.CrossRefPubMedCentralPubMedGoogle Scholar
  46. Herrmann, S. D., Barreira, T. V., Kang, M., & Ainsworth, B. E. (2014). Impact of accelerometer wear time on physical activity data: A NHANES semisimulation data approach. British Journal of Sports Medicine, 48(3), 278–282.CrossRefPubMedGoogle Scholar
  47. Hjorth, M. F., Chaput, J.-P., Michaelsen, K., Astrup, A., Tetens, I., & Sjödin, A. (2013). Seasonal variation in objectively measured physical activity, sedentary time, cardio-respiratory fitness and sleep duration among 8–11 year-old Danish children: A repeated-measures study. BMC Public Health, 13, 808.CrossRefPubMedCentralPubMedGoogle Scholar
  48. Johannsen, D. L., Calabro, M. A., Stewart, J., Franke, W., Rood, J. C., & Welk, G. J. (2010). Accuracy of armband monitors for measuring daily energy expenditure in healthy adults. Medicine and Science in Sports and Exercise, 42(11), 2134–2140.CrossRefPubMedGoogle Scholar
  49. Kelly, L. A., McMillan, D. G., Anderson, A., Fippinger, M., Fillerup, G., & Rider, J. (2013). Validity of actigraphs uniaxial and triaxial accelerometers for assessment of physical activity in adults in laboratory conditions. BMC Medical Physics, 13(1), 5.CrossRefPubMedCentralPubMedGoogle Scholar
  50. Lamonte, M. J., & Ainsworth, B. E. (2001). Quantifying energy expenditure and physical activity in the context of dose response. Medicine and Science in Sports and Exercise, 33(6 Suppl.), 370–378.CrossRefGoogle Scholar
  51. Loprinzi, P. D., Lee, H., Cardinal, B. J., Crespo, C. J., Andersen, R. E., & Smit, E. (2012). The relationship of actigraph accelerometer cut-points for estimating physical activity with selected health outcomes. Research Quarterly for Exercise and Sport, 83(3), 422–430.PubMedGoogle Scholar
  52. Mackey, D. C., Manini, T. M., Schoeller, D. A., Koster, A., Glynn, N. W., Goodpaster, B. H., et al. (2011). Validation of an armband to measure daily energy expenditure in older adults. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 66(10), 1108–1113.CrossRefPubMedGoogle Scholar
  53. Maddison, R., Jiang, Y., Hoorn, S. V., Mhurchu, C. N., Lawes, C. M. M., Rodgers, A., & Rush, E. (2009). Estimating energy expenditure with the RT3 triaxial accelerometer. Research Quarterly for Exercise and Sport, 80(2), 249–256.CrossRefPubMedGoogle Scholar
  54. McDonald, C. M., Widman, L., Abresch, R. T., Walsh, S. A., & Walsh, D. D. (2005). Utility of a step activity monitor for the measurement of daily ambulatory activity in children. Archives of Physical Medicine and Rehabilitation, 86(4), 793–801.CrossRefPubMedGoogle Scholar
  55. Müller, C., Winter, C., & Rosenbaum, D. (2010). Aktuelle objektive Messverfahren zur Erfassung körperlicher Aktivität im Vergleich zu subjektiven Erhebungsmethoden. Deutsche Zeitschrift für Sportmedizin, 61(1), 11–18.Google Scholar
  56. Pedersen, B. K., & Saltin, B. (2006). Evidence for prescribing exercise as therapy in chronic disease. Scandinavian Journal of Medicine & Science in Sports, 16(Suppl. 1), 3–63.CrossRefGoogle Scholar
  57. Pfeiffer, K. A., McIver, K. L., Dowda, M., Almeida, M. J. C. A., & Pate, R. R. (2006). Validation and calibration of the Actical accelerometer in preschool children. Medicine and Science in Sports and Exercise, 38(1), 152–157.CrossRefPubMedGoogle Scholar
  58. Pober, D. M., Staudenmayer, J., Raphael, C., & Freedson, P. S. (2006). Development of novel techniques to classify physical activity mode using accelerometers. Medicine and Science in Sports and Exercise, 38(9), 1626–1634.CrossRefPubMedGoogle Scholar
  59. Powell, S. M., Jones, D. I., & Rowlands, A. V. (2003). Technical variability of the RT3 accelerometer. Medicine and Science in Sports and Exercise, 35(10), 1773–1778.CrossRefPubMedGoogle Scholar
  60. Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009). Activity identification using body-mounted sensors–a review of classification techniques. Physiological Measurement, 30(4), R1–33.CrossRefPubMedGoogle Scholar
  61. Resnick, B., Nahm, E. S., Orwig, D., Zimmerman, S. S., & Magaziner, J. (2001). Measurement of activity in older adults: Reliability and validity of the Step Activity Monitor. Journal of Nursing Measurement, 9(3), 275–290.PubMedGoogle Scholar
  62. Robusto, K. M., & Trost, S. G. (2012). Comparison of three generations of ActiGraph™ activity monitors in children and adolescents. Journal of Sports Sciences, 30(13), 1429–1435.CrossRefPubMedCentralPubMedGoogle Scholar
  63. Rothney, M. P., Apker, G. A., Song, Y., & Chen, K. Y. (2008). Comparing the performance of three generations of ActiGraph accelerometers. Journal of Applied Physiology (Bethesda, Md.: 1985), 105(4), 1091–1097.Google Scholar
  64. Rowlands, A. V. (2007). Accelerometer assessment of physical activity in children: An update. Pediatric Exercise Science, 19(3), 252–266.PubMedGoogle Scholar
  65. Rowlands, A. V., Thomas, P. W. M., Eston, R. G., & Topping, R. (2004). Validation of the RT3 triaxial accelerometer for the assessment of physical activity. Medicine and Sience in Sports and Exercise, 36(3), 518–524.CrossRefGoogle Scholar
  66. Ryan, C. G., Grant, P. M., Tigbe, W. W., & Granat, M. H. (2006). The validity and reliability of a novel activity monitor as a measure of walking. British Journal of Sports Medicine, 40(9), 779–784.CrossRefPubMedCentralPubMedGoogle Scholar
  67. Samitz, G., & Baron, R. (2002). Epidemiologie der körperlichen Aktivität. Definitionen, Klassifikationen, Methoden und Konzepte. In G. Samitz & G. Mensink (Hrsg.), Körperliche Aktivität in Prävention und Therapie (S. 11–31). München: Hans Marseille Verlag GmbH.Google Scholar
  68. Santos-Lozano, A., Marín, P. J., Torres-Luque, G., Ruiz, J. R., Lucía, A., & Garatachea, N. (2012). Technical variability of the GT3X accelerometer. Medical Engineering & Physics, 34(6), 787–790.CrossRefGoogle Scholar
  69. Sasaki, J. E., John, D., & Freedson, P. S. (2011). Validation and comparison of ActiGraph activity monitors. Journal of Science and Medicine in Sport, 14(5), 411–416.CrossRefPubMedGoogle Scholar
  70. Scharhag-Rosenberger, F., Meyer, T., Gässler, N., Faude, O., & Kindermann, W. (2010). Exercise at given percentages of VO2max: Heterogeneous metabolic responses between individuals. Journal of Science and Medicine in Sport, 13(1), 74–79.CrossRefPubMedGoogle Scholar
  71. Schmidt, A. L., Pennypacker, M. L., Thrush, A. H., Leiper, C. I., & Craik, R. L. (2011). Validity of the StepWatch Step Activity Monitor: Preliminary findings for use in persons with Parkinson disease and multiple sclerosis. Journal of Geriatric Physical Therapy (2001), 34(1), 41–45.CrossRefGoogle Scholar
  72. Staudenmayer, J., Pober, D., Crouter, S., Bassett, D., & Freedson, P. (2009). An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. Journal of Applied Physiology, 107(4), 1300–1307.CrossRefPubMedCentralPubMedGoogle Scholar
  73. Sumukadas, D., Laidlaw, S., & Witham, M. D. (2008). Using the RT3 accelerometer to measure everyday activity in functionally impaired older people. Aging Clinical and Experimental Research, 20(1), 15–18.CrossRefPubMedGoogle Scholar
  74. Sumukadas, D., Witham, M., Struthers, A., & McMurdo, M. (2009). Day length and weather conditions profoundly affect physical activity levels in older functionally impaired people. Journal of Epidemiology & Community Health, 63(4), 305–309.CrossRefGoogle Scholar
  75. Takken, T., Stephens, S., Balemans, A., Tremblay, M. S., Esliger, D. W., Schneiderman, J., et al. (2010). Validation of the Actiheart activity monitor for measurement of activity energy expenditure in children and adolescents with chronic disease. European journal of Clinical Nutrition, 64(12), 1494–1500.CrossRefPubMedGoogle Scholar
  76. Taraldsen, K., Askim, T., Sletvold, O., Einarsen, E. K., Bjåstad, K. G., Indredavik, B., et al. (2011). Evaluation of a body-worn sensor system to measure physical activity in older people with impaired function. Physical Therapy, 91(2), 277–285.CrossRefPubMedGoogle Scholar
  77. Taraldsen, K., Chastin, S. F., Riphagen, I. I., Vereijken, B., & Helbostad, J. L. (2012). Physical activity monitoring by use of accelerometer-based body-worn sensors in older adults: a systematic literature review of current knowledge and applications. Maturitas, 71(1), 13–19.CrossRefPubMedGoogle Scholar
  78. Toschke, J. A., Kries, R. von, Rosenfeld, E., & Toschke, A. M. (2007). Reliability of physical activity measures from accelerometry among preschoolers in free-living conditions. Clinical Nutrition, 26(4), 416–420.CrossRefPubMedGoogle Scholar
  79. Troiano, R. P., Berrigan, D., Dodd, K. W., Masse, L. C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine and Science in Sports and Exercise, 40(1), 181–188.CrossRefPubMedGoogle Scholar
  80. Trost, S. G., Loprinzi, P. D., Moore, R., & Pfeiffer, K. A. (2011). Comparison of accelerometer cut points for predicting activity intensity in youth. Medicine and Science in Sports and Exercise, 43(7), 1360–1368.CrossRefPubMedGoogle Scholar
  81. Trost, S. G., McIver, K. L., & Pate, R. R. (2005). Conducting accelerometer-based activity assessments in field-based research. Medicine and Science in Sports and Exercise, 37(11 Suppl.), 531–543.CrossRefGoogle Scholar
  82. Tryon, W. W., & Williams, R. (2003). Fully proportional actigraphy: A new instrument. Psychology Faculty Publications (Paper 21).Google Scholar
  83. Tucker, J. M., Welk, G., Nusser, S. M., Beyler, N. K., & Dzewaltowski, D. (2011). Estimating minutes of physical activity from the previous day physical activity recall: Validation of a prediction equation. Journal of Physical Activity & Health, 8(1), 71–78.Google Scholar
  84. Tudor-Locke, C., Camhi, S. M., & Troiano, R. P. (2012). A catalog of rules, variables, and definitions applied to accelerometer data in the National Health and Nutrition Examination Survey, 2003–2006. Preventing Chronic Disease, 9, E113.PubMedCentralPubMedGoogle Scholar
  85. Van Hees, V. T., Slootmaker, S. M., Groot, G. de, van Mechelen, W., & Van Lummel, R. C. (2009). Reproducibility of a triaxial seismic accelerometer (DynaPort). Medicine and Science in Sports and Exercise, 41(4), 810–817.CrossRefPubMedGoogle Scholar
  86. van Poppel, M. N. M., Chinapaw, M. J. M., Mokkink, L. B., van Mechelen, W., & Terwee, C. B. (2010). Physical activity questionnaires for adults: A systematic review of measurement properties. Sports Medicine (Auckland, N.Z.), 40(7), 565–600.CrossRefGoogle Scholar
  87. van Schooten, K. S., Rispens, S. M., Elders, P. J. M., Lips, P., van Dieën, J. H., & Pijnappels, M. (2013). Assessing physical activity in older adults: Required days of trunk accelerometer measurements for reliable estimation. Journal of Aging and Physical Activity [epub].Google Scholar
  88. Vanhelst, J., Béghin, L., Duhamel, A., Bergman, P., Sjöström, M., & Gottrand, F. (2012). Comparison of uniaxial and triaxial accelerometry in the assessment of physical activity among adolescents under free-living conditions: The HELENA study. BMC Medical Research Methodology, 12, 26.CrossRefPubMedCentralPubMedGoogle Scholar
  89. Villars, C., Bergouignan, A., Dugas, J., Antoun, E., Schoeller, D. A., Roth, H., et al. (2012). Validity of combining heart rate and uniaxial acceleration to measure free-living physical activity energy expenditure in young men. Journal of Applied Physiology, 113(11), 1763–1771.CrossRefPubMedGoogle Scholar
  90. Wanner, M., Martin, B. W., Meier, F., Probst-Hensch, N., & Kriemler, S. (2013). Effects of filter choice in GT3X accelerometer assessments of free-living activity. Medicine and Science in Sports and Exercise, 45(1), 170–177.CrossRefPubMedGoogle Scholar
  91. Yıldırım, M., Verloigne, M., Bourdeaudhuij, I. de, Androutsos, O., Manios, Y., Felso, R., et al. (2011). Study protocol of physical activity and sedentary behaviour measurement among schoolchildren by accelerometry–cross-sectional survey as part of the ENERGY-project. BMC Public Health, 11, 182.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lars Gabrys
    • 1
  • Christian Thiel
    • 2
  • Alexander Tallner
    • 3
  • Britta Wilms
    • 4
  • Carsten Müller
    • 5
  • Daniela Kahlert
    • 6
  • Darko Jekauc
    • 7
  • Fabienne Frick
    • 8
  • Holger Schulz
    • 9
  • Ole Sprengeler
    • 10
  • Stefan Hey
    • 11
  • Susanne Kobel
    • 12
  • Lutz Vogt
    • 13
  1. 1.Abteilung 2– Epidemiologie und Gesundheitsmonitoring, Dr. B . KurthRobert Koch-InstitutBerlinDeutschland
  2. 2.Studienbereich Physiotherapie, Hochschule für Gesundheit Bochum, Prof. C. GrünebergBochumDeutschland
  3. 3.Institut für Sportwissenschaft, Arbeitsbereich Bewegung und Gesundheit, Prof. K. PfeiferFriedrich-Alexander-Universität Erlangen-NürnbergErlangenDeutschland
  4. 4.Institute of Human Movement Sciences and SportExercise Physiology Lab, Prof. C. M. Spengler, ETH ZürichZurichSchweiz
  5. 5.Institut für Experimentelle Muskuloskelettale Medizin (IEMM)Funktionsbereich Bewegungsanalytik, Prof. D. Rosenbaum, Universitätsklinikum MünsterMünsterDeutschland
  6. 6.Institut für Sport- und Bewegungswissenschaft, Lehrstuhl Sport- und Gesundheitswissenschaften, Prof. W. SchlichtUniversität StuttgartStuttgartDeutschland
  7. 7.Institut für Sportwissenschaft, Prof. A. ArampatzisHumboldt-Universität zu BerlinBerlinDeutschland
  8. 8.Institut für Bewegungstherapie und bewegungsorientierte Prävention und Rehabilitation, Prof. I. FroböseDeutsche Sporthochschule KölnKölnDeutschland
  9. 9.Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum MünchenMünchenDeutschland
  10. 10.Abteilung Epidemiologische Methoden und Ursachenforschung, Prof. W. AhrensLeibniz-Institut für Präventionsforschung und Epidemiologie – BIPS GmbHBremenDeutschland
  11. 11.Karlsruher Institut für Technologie (KIT), Institut für Technik der Informationsverarbeitung, Prof. W. StorkKarlsruheDeutschland
  12. 12.Sektion Sport- und Rehabilitationsmedizin, Universitätsklinikum Ulm, Prof. J. SteinackerUlmDeutschland
  13. 13.Abteilung Sportmedizin, Prof. W. BanzerGoethe-Universität FrankfurtFrankfurtDeutschland

Personalised recommendations