Advertisement

Sportwissenschaft

, Volume 42, Issue 4, pp 280–285 | Cite as

Erythropoietin gene doping: facts and fictions

  • Wolfgang Jelkmann
  • Wolfgang Jelkmann
Essay

Abstract

The substances and methods forbidden to increase the mass of hemoglobin (Hb) in sports (“blood doping”) include red blood cell (RBC) transfusion, Hb infusion, recombinant or chemical agents that stimulate the erythropoietin receptor, erythropoietin gene (EPO) transfer, and misuse of drugs activating endogenous EPO expression. The two latter possibilities are considered in this article. EPO transgenes have been explored in animal studies and in seminal human trials. However, the method is still not well engineered, despite almost 10 years of clinical studies. The menacing detriment of EPO transfer is immunogenicity of the transgenic DNA or cells and of the secreted recombinant proteins, respectively. However, since chemicals are available that activate EPO-controlling transcription factors, these compounds may also be misused in sports. The chemicals include inhibitors of GATA, which prevent GATA-2 from suppressing the EPO promoter, and stabilizers of the hypoxia-inducible transcription factors (HIFs), which activate the EPO enhancer. While there is a hope that EPO transfer has not yet entered the sports scene as a means of blood doping, drugs that increase endogenous EPO expression must be considered as a realistic threat with regard to doping efforts. In particular, there is suspicion that cobaltous salt, which is a potent stimulator of EPO when taken orally, could be misused by athletes.

Keywords

Blood doping Erythropoietin Gene transfer HIF-stabilizers Recombinant DNA 

Erythropoietin-Gen Doping: Fakten und Fiktionen

Zusammenfassung

Die im Sport verbotenen Substanzen und Methoden zur Erhöhung der Hämoglobinmasse (“Blutdoping”) beinhalten Erythrozytentransfusionen, Hämoglobininfusionen, den Erythropoietinrezeptor aktivierende rekombinante oder chemische Arzneistoffe, den Transfer des Erythropoietingens (EPO) und EPO aktivierende Substanzen. Letztere zwei Methoden werden hier betrachtet. Der EPO-Transfer wurde bereits in Tierversuchen und ersten klinischen Studien erprobt, ist jedoch medizinisch nicht ausgereift. Vorrangiges Problem ist die Immunogenität der transgenen DNA bzw. Zellen und der rekombinanten Proteine. Es gibt jedoch kleinmolekulare Stoffe, welche auf die Transkriptionsfaktoren einwirken, die das endogene EPO kontrollieren. Da diese Chemikalien leicht erhältlich sind und oral eingenommen werden können, besteht die Gefahr, dass sie im Sport angewendet werden. Zu solchen Substanzen gehören Antagonisten von GATA, die den EPO-Promotor de-blockieren, und Stabilisatoren der Hypoxie induzierbaren Transkriptionsfaktoren (HIF), die den EPO-Enhancer aktivieren. Während die Hoffnung besteht, dass der direkte EPO-Transfer noch keinen Eingang in die Sportszene gefunden hat, stellen die chemischen Stoffe, die EPO induzieren, eine reale Gefahr dar. Dies gilt insbesondere für Kobaltsalze, die oral eingenommen werden können.

Schlüsselwörter

Blutdoping Erythropoietin Gen-Transfer HIF-Stabilisatoren Rekombinante DNA 

Notes

Conflict of interest.

The author declares no conflict of interest.

References

  1. Baoutina, A., Coldham, T., Bains, G. S., & Emslie, K. R. (2010). Gene doping detection: Evaluation of approach for direct detection of gene transfer using erythropoietin as a model system. Gene Therapy, 17(8), 1022–1032.PubMedCrossRefGoogle Scholar
  2. Bartholomew, A., Patil, S., Mackay, A., Nelson, M., Buyaner, D., Hardy, W., Mosca, J., Sturgeon, C., Siatskas, M., Mahmud, N., Ferrer, K., Deans, R., Moseley, A., Hoffman, R., & Devine, S. M. (2001). Baboon mesenchymal stem cells can be genetically modified to secrete human erythropoietin in vivo. Human Gene Therapy, 12(12), 1527–1541.PubMedCrossRefGoogle Scholar
  3. Beiter, T., Zimmermann, M., Fragasso, A., Armeanu, S., Lauer, U. M., Bitzer, M., Su, H., Young, W. L., Niess, A. M., & Simon, P. (2008). Establishing a novel single-copy primer-internal intron-spanning PCR (spiPCR) procedure for the direct detection of gene doping. Exercise Immunology Review, 14, 73–85.PubMedGoogle Scholar
  4. Beiter, T., Zimmermann, M., Fragasso, A., Hudemann, J., Niess, A. M., Bitzer, M., Lauer, U. M., & Simon, P. (2010). Direct and long-term detection of gene doping in conventional blood samples. Gene Therapy, 18(3), 225–231.PubMedCrossRefGoogle Scholar
  5. Bernhardt, W. M., Wiesener, M. S., Scigalla, P., Chou, J., Schmieder, R. E., Gunzler, V., & Eckardt, K. U. (2010). Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. Journal of the American Society of Nephrology, 21(12), 2151–2156.PubMedCrossRefGoogle Scholar
  6. Binley, K., Askham, Z., Iqball, S., Spearman, H., Martin, L., de Alwis, M., Thrasher, A. J., Ali, R. R., Maxwell, P. H., Kingsman, S., & Naylor, S. (2002). Long-term reversal of chronic anemia using a hypoxia-regulated erythropoietin gene therapy. Blood, 100(7), 2406–2413.PubMedCrossRefGoogle Scholar
  7. Bohl, D., Naffakh, N., & Heard, J. M. (1997). Long-term control of erythropoietin secretion by doxycycline in mice transplanted with engineered primary myoblasts. Nature Medicine, 3(3), 299–305.PubMedCrossRefGoogle Scholar
  8. Chenuaud, P., Larcher, T., Rabinowitz, J. E., Provost, N., Cherel, Y., Casadevall, N., Samulski, R. J., & Moullier, P. (2004). Autoimmune anemia in macaques following erythropoietin gene therapy. Blood, 103(9), 3303–3304.PubMedCrossRefGoogle Scholar
  9. Curtis, J. R., Goode, G. C., Herrington, J., & Urdaneta, L. E. (1976). Possible cobalt toxicity in maintenance hemodialysis patients after treatment with cobaltous chloride: A study of blood and tissue cobalt concentrations in normal subjects and patients with terminal and renal failure. Clinical Nephrology, 5(2), 61–65.PubMedGoogle Scholar
  10. Gao, G., Lebherz, C., Weiner, D. J., Grant, R., Calcedo, R., McCullough, B., Bagg, A., Zhang, Y., & Wilson, J. M. (2004). Erythropoietin gene therapy leads to autoimmune anemia in macaques. Blood, 103(9), 3300–3302.PubMedCrossRefGoogle Scholar
  11. Imagawa, S., Matsumoto, K., Horie, M., Ohkoshi, N., Nagasawa, T., Doi, T., Suzuki, N., & Yamamoto, M. (2007). Does K-11706 enhance performance and why? International Journal of Sports Medicine, 28(11), 928–933.PubMedCrossRefGoogle Scholar
  12. Jelkmann, W. (2007). Control of erythropoietin gene expression and its use in medicine. Methods in Enzymology, 435(10), 179–197.PubMedCrossRefGoogle Scholar
  13. Jelkmann, W. (2009a). Erythropoiesis stimulating agents and techniques: A challenge for doping analysts. Current Medicinal Chemistry, 16(10), 1236–1247.CrossRefGoogle Scholar
  14. Jelkmann, W. (2009b). Efficacy of recombinant erythropoietins: Is there unity of international units? Nephrology Dialysis Transplantation, 24, 1366–1368.CrossRefGoogle Scholar
  15. Jelkmann, W., & Lundby, C. (2011). Blood doping and its detection. Blood, 118(9), 2395–2404.PubMedCrossRefGoogle Scholar
  16. Jelkmann, W., Pagel, H., Hellwig, T., & Fandrey, J. (1997). Effects of antioxidant vitamins on renal and hepatic erythropoietin production. Kidney International, 51(2), 497–501.PubMedCrossRefGoogle Scholar
  17. Lasne, F., Martin, L., de Ceaurriz, J., Larcher, T., Moullier, P., & Chenuaud, P. (2004). “Genetic doping” with erythropoietin cDNA in primate muscle is detectable. Molecular Therapy, 10(3), 409–410.PubMedCrossRefGoogle Scholar
  18. Lippi, G., Franchini, M., & Guidi, G. C. (2006). Blood doping by cobalt. Should we measure cobalt in athletes? Journal of Occupational Medicine and Toxicology, 1, 18.PubMedCrossRefGoogle Scholar
  19. Lippin, Y., Dranitzki-Elhalel, M., Brill-Almon, E., Mei-Zahav, C., Mizrachi, S., Liberman, Y., Iaina, A., Kaplan, E., Podjarny, E., Zeira, E., Harati, M., Casadevall, N., Shani, N., & Galun, E. (2005). Human erythropoietin gene therapy for patients with chronic renal failure. Blood, 106(7), 2280–2286.PubMedCrossRefGoogle Scholar
  20. Menzel, O., Birraux, J., Wildhaber, B. E., Jond, C., Lasne, F., Habre, W., Trono, D., Nguyen, T. H., & Chardot, C. (2009). Biosafety in ex vivo gene therapy and conditional ablation of lentivirally transduced hepatocytes in nonhuman primates. Molecular Therapy, 17(10), 1754–1760.PubMedCrossRefGoogle Scholar
  21. Nagel, S., Talbot, N. P., Mecinovic, J., Smith, T. G., Buchan, A. M., & Schofield, C. J. (2010). Therapeutic manipulation of the HIF hydroxylases. Antioxidants & Redox Signaling, 12(4), 481–501.CrossRefGoogle Scholar
  22. Nakano, Y., Imagawa, S., Matsumoto, K., Stockmann, C., Obara, N., Suzuki, N., Doi, T., Kodama, T., Takahashi, S., Nagasawa, T., & Yamamoto, M. (2004). Oral administration of K-11706 inhibits GATA binding activity, enhances hypoxia-inducible factor 1 binding activity, and restores indicators in an in vivo mouse model of anemia of chronic disease. Blood, 104(13), 4300–4307.PubMedCrossRefGoogle Scholar
  23. Orive, G., De Castro M., Ponce, S., Hernandez, R. M., Gascon, A. R., Bosch, M., Alberch, J., & Pedraz, J. L. (2005). Long-term expression of erythropoietin from myoblasts immobilized in biocompatible and neovascularized microcapsules. Molecular Therapy, 12(2), 283–289.PubMedCrossRefGoogle Scholar
  24. Rinsch, C., Regulier, E., Deglon, N., Dalle, B., Beuzard, Y., & Aebischer, P. (1997). A gene therapy approach to regulated delivery of erythropoietin as a function of oxygen tension. Human Gene Therapy, 8(16), 1881–1889.PubMedCrossRefGoogle Scholar
  25. Rinsch, C., Dupraz, P., Schneider, B. L., Déglon, N., Maxwell, P. H., Ratcliffe, P. J., & Aebischer, P. (2002). Delivery of erythropoietin by encapsulated myoblasts in a genetic model of severe anemia. Kidney International, 62, 1395–1401.PubMedCrossRefGoogle Scholar
  26. Rivera, V. M., Gao, G. P., Grant, R. L., Schnell, M. A., Zoltick, P. W., Rozamus, L. W., Clackson, T., & Wilson, J. M. (2005). Long-term pharmacologically regulated expression of erythropoietin in primates following AAV-mediated gene transfer. Blood, 105(4), 1424–1430.PubMedCrossRefGoogle Scholar
  27. Scheidemann, F., Therrien, J. P., Vogel, J., & Pfutzner, W. (2010). In vivo synthesis and secretion of erythropoietin by genetically modified primary human keratinocytes grafted onto immunocompromised mice. Experimental Dermatology, 19(3), 289–297.PubMedCrossRefGoogle Scholar
  28. Sebestyen, M. G., Hegge, J. O., Noble, M. A., Lewis, D. L., Herweijer, H., & Wolff, J. A. (2007). Progress toward a nonviral gene therapy protocol for the treatment of anemia. Human Gene Therapy, 18(3), 269–285.PubMedCrossRefGoogle Scholar
  29. Setoguchi, Y., Danel, C., & Crystal, R. G. (1994). Stimulation of erythropoiesis by in vivo gene therapy: Physiologic consequences of transfer of the human erythropoietin gene to experimental animals using an adenovirus vector. Blood, 84(9), 2946–2953.PubMedGoogle Scholar
  30. Simonsen, L.O., Harbak, H., & Bennekou, P. (2012). Cobalt metabolism and toxicology—A brief update. Science of the Total Environment, 432, 210–215.PubMedCrossRefGoogle Scholar
  31. Tabata, M., Tarumota, T., Ohmine, K., Furukawa, Y., Hatake, K., Ozawa, K., Hasegawa, Y., Mukai, H., Yamamoto, M., & Imagawa, S. (2001). Stimulation of GATA-2 as a mechanism of hydrogen peroxide suppression in hypoxia-induced erythropoietin gene expression. Journal of Cellular Physiology, 186, 260–267.PubMedCrossRefGoogle Scholar
  32. Yuan, Y., Beitner-Johnson, D., & Millhorn, D. E. (2001). Hypoxia-inducible factor 2alpha binds to cobalt in vitro. Biochemical Biophysical Research Communication, 288(4), 849–854.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institute of PhysiologyUniversity of LuebeckLuebeckGermany

Personalised recommendations