Skip to main content

Advertisement

Log in

Körperliches und kognitives Training exekutiver Funktionen in Kindergarten und Schule

Physical and cognitive training of executive functions in kindergarten and schools settings

  • Hauptbeiträge
  • Published:
Sportwissenschaft Aims and scope Submit manuscript

Zusammenfassung

Exekutive Funktionen, die durch körperliches und kognitives Training gefördert werden können, sind für die Lernleistung und die sozial-emotionale Entwicklung von Kindern und Jugendlichen von zentraler Bedeutung. Aus diesem Grund sollte zukünftig das Training exekutiver Funktionen im Kindergarten und im Schulkontext und dabei insbesondere sowohl in der Lehreraus- und Weiterbildung als auch im Unterricht fest verankert werden. Gleichzeitig sollten kognitions- und neurowissenschaftliche Studien zum Einfluss des Sports auf die Lernleistung von Heranwachsenden verstärkt unter realen Lernbedingungen und somit in Forschungsschulen stattfinden.

Abstract

Executive functions, which can be encouraged by physical and cognitive training, are pivotally important for the social and emotional development of children and adolescents. For this reason future training of executive functions in kindergarten and school settings should be firmly anchored in both teacher education and continuing education courses as well as in school lessons. At the same time cognitive and neuroscientific studies analyzing the influence of sports on the learning performance of children and adolescents should be conducted under realistic learning conditions and hence in research schools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Notes

  1. Organisation für wirtschaftliche Zusammenarbeit und Entwicklung

  2. Center for Educational Research and Innovation

  3. Ross School, East Hampton, NY; Carroll School, Lincoln, MA; Landmark School, Beverly, MA

  4. Trio World School, Sahakar Nagar, Bangalore

  5. Living School, Paris

  6. Bei der Kopfrechenaufgabe 97+13–5+9 beispielsweise ist das Arbeitsgedächtnis stark gefordert, da man sich, während die Zahl 13 zu 97 addiert wird, mit Hilfe des Arbeitsgedächtnisses merken muss, dass anschließend von der errechneten Summe zunächst die Zahl 5 subtrahiert und in einem weiteren Rechenschritt die Zahl 9 addiert werden muss.

  7. Wie beispielsweise beim Verstehen von Sätzen, in die längere Nebensätze integriert werden oder beim Sprechen einer Fremdsprache, bei der man während des Sprechens im Geiste nach Vokabeln sucht, ohne dabei zu vergessen, was man inhaltlich sagen möchte.

  8. „Teacher burnout from dealing with out-of-control children is skyrocketing“, auf diese Weise beschreiben Adele Diamond et al. den Zusammenhang des Burnout-Syndroms von Lehrern bei unzureichend ausgebildetem selbstregulatorischem Verhalten von Kindern (s. “Supplemental Online Material“ in Diamond et al., 2007).

  9. Im Zeitraum von 1995 bis 1999 stieg in den USA die Verschreibung von Medikamenten für die Behandlung von ADHS bei Kindern mit schlechter Inhibition des Verhaltens und der Aufmerksamkeit um 400% (s. “Supplemental Online Material“ in Diamond et al., 2007).

  10. CNV „contingent negative variation“

  11. Die N2 bzw. N200 erreicht ihren [im negativen (N) Bereich gelegenen] Höhepunkt zwischen 150 und 300 msec nach Präsentation eines Stimulus.

Literatur

  1. Barnett, J.H., Heron, J., Ring, S.M., Golding, J., Goldmann, D., Xu, K. & Jones, P.B. (2007). Gender-specific effects of the catechol-O-methyltransferase Val108/158Met polymorphism on cognitive function in children. American Journal of Psychiatry, 164 (1), 142–914.

    Google Scholar 

  2. Beck, F. (2008): Sportmotorik und Gehirn. Sportwissenschaft, 38 (4), 423–450.

  3. Berninger, V.W., Raskind, W., Richards, T., Abbott, R. & Stock, P. (2008). A multidisciplinary approach to understanding developmental dyslexia within working-memory architecture: Genotypes, phenotypes, brain, and instruction. Developmental Neuropsychology, 33 (6), 707–744.

    Google Scholar 

  4. Blair, C. & Diamond, A. (2008). Biological processes in prevention and intervention: The promotion of self-regulation as a means of preventing school failure. Development and Psychopathology, 20, 899–911.

    Google Scholar 

  5. Blair, C., Knipe, H. & Gamson, D. (2008). Is there a role for executive functions in the development of mathematics ability? Mind, Brain, and Education, 2 (2), 80–89.

    Google Scholar 

  6. Breitenstein, C., Korsukewitz, C., Flöel, A., Kretzschmar, T., Diederich, K. & Knecht, S. (2006). Tonic dopaminergic stimulation impairs associative learning in healthy subjects. Neuropsychopharmacology, 31 (11), 2552–2564.

    Google Scholar 

  7. Brocki, K.C. & Bohlin, G. (2004). Executive functions in children aged 6 to 13: A dimensional and developmental study. Developmental Neuropsychology, 26, 571–593.

    Google Scholar 

  8. Buck, S.M., Hillman, C.H. & Castelli, D. (2008). Aerobic fitness influences on Stroop task performance in preadolescent children. Medicine and Science in Sports & Exercise, 40, 166–172.

    Google Scholar 

  9. Budde, H., Voelcker-Rehage, C., Pietrassyk-Kendziorra, S., Ribeiro, P. & Tidow, G. (2008). Acute coordinative exercise improves attentional performance in adolescents. Neurosicence letters, 441, 219–223.

    Google Scholar 

  10. Bull, R. & Scerif, G. (2001). Executive functioning as a predictor of children’s mathematics ability: Inhibition, switching, and working memory. Developmental Neuropsychology, 19, 273–293.

    Google Scholar 

  11. Carlson, S.M. (2003). Executive Function in Context: Developmental, Measurement, Theory, and Experience. Monographs of the Society for Research in Child Development, 68, 138–151.

    Google Scholar 

  12. Clair-Thompson, S.C. & Gathercole, S.E. (2006). Executive functions and achievements in school: Shifting, updating, inhibition, and working memory. Quarterly Journal of Experimental Psychology, 59 (4), 745–759.

    Google Scholar 

  13. Diamond, A. (2007). Consequences of Variations in Genes that affect Dopamine in Prefrontal Cortex. Cerebral Cortex, 17, i161–i170.

  14. Diamond, A., Barnett, W.S., Thomas, J. & Munro, S. (2007). Preschool Program Improves Cognitive Control. Science, 318, 1387–1388.

  15. Diamond, A., Briand, L., Fossella, J. & Gehlbach, L. (2004). Genetic and neurochemical modulation of prefrontal cognitive functions in children. American Journal of Psychiatry, 161, 125–132.

    Google Scholar 

  16. Diamond, A. (2002). Normal development of prefrontal cortex from birth to young adulthood: Cognitive functions, anatomy, and biochemistry. In D.T. Stuss & R.T. Knight (Eds.). Principles of frontal lobe function (S. 466–503). London: Oxford University Press.

  17. Fischer, K.W. & Hinton, C. (2008). Research Schools: Grounding Research in Educational Practice. Mind, Brain, and Education, 2, 157–160.

    Google Scholar 

  18. Floresco, S.B. & Magyar, O. (2006). Mesocortical dopamine modulation of executive functions: beyond working memory. Psychopharmacology, 188 (4), 567–568.

    Google Scholar 

  19. Grigorenko, E.L. (2007). How Can Genomics Inform Education? Mind, Brain, and Education, 1 (1), 20–27.

  20. Hillman, C.H., Kramer, A.F., Belopolsky, A.V. & Smith, D.P. (2006). A cross-sectional examination of age and physical activity on performance and event-related brain potentials in a task switching paradigm. International Journal of Psychophysiology, 59 (1), 30–39.

    Google Scholar 

  21. Hillman, C.H., Castelli, D.M. & Buck, S.M. (2005). Aerobic fitness and neurocognitive function in healthy preadolescent children. Medicine & science in sports & exercise, 37, 1967–1974.

    Google Scholar 

  22. Hinton, C. & Fischer, K.W. (2008). Research Schools: Grounding Research in Educational Practice. Mind, Brain, and Education, 4 (2), 157–160.

    Google Scholar 

  23. Jaeggi, S.M., Buschkuehl, M., Jonides, J. & Perrig, W.J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105 (19), 6791–6792.

    Google Scholar 

  24. Kane, M.J., Brown, L.H., McVay, J.C., Silvia, P.J., Myin-Germeyes, I. & Kwapil, T.R. (2007). For whom the mind wanders, and when: an experience-sampling study of working memory and executive control in daily life. Psychological Science, 8 (7), 614–621.

    Google Scholar 

  25. Kida, N., Oda, S. & Matsumura, M. (2005). Intensive baseball practice improves the Go/Nogo reaction time, but not the simple reaction time. Cognitive Brain Research, 22, 257–264.

    Google Scholar 

  26. Klingberg, T. (2009). The Overflowing Brain. Information overload and the limits of working memory. New York: Oxford University Press.

    Google Scholar 

  27. Klingberg, T., Fernell, E., Olesen, P.J., Johnson, M., Gustavsson, P., Dahlström, K., Gillberg, C.G., Fossberg, H. & Westerberg, H. (2005). Computerized training of working memory in children with ADHD - a randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44, 177–186.

    Google Scholar 

  28. Kramer, A.F., Hahn, S., Cohen, N.J., Banich, M.T., McCauley, E., Harrison, C.R., Chason, J., Vakil, E., Bardell, L., Boileau, R.A. & Colombe, A. (1999). Ageing, fitness and neurocognitive function. Nature, 400, 418–419.

  29. Kubesch, S. (2008). Körperliche Aktivität und exekutive Funktionen. Reihe Junge Sportwissenschaft. Schorndorf: Hoffmann Verlag.

  30. Kubesch, S., Bretschneider, V., Freudenmann, R., Weidenhammer, N., Lehmann, M. Spitzer, M. & Grön, G. (2003). Aerobic endurance exercise improves executive functions in depressed patients. Journal of Clinical Psychiatry, 9, 1005–1012.

    Google Scholar 

  31. Lamm, C., Zelazo, P.D. & Lewis, M.D. (2006). Neural correlates of cognitive control in childhood and adolescence: Disentangling the contributions of age and executive function. Neuropsychologia, 44 (11), 2139–48.

    Google Scholar 

  32. Landerl, K., Bevan, A. & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93 (2), 99–125.

    Google Scholar 

  33. Mazzocco, M.M.M. & Kover, S.T. (2007). A longitudinal assessment of executive function in skills and their association with math performance. Child Neuropsychology, 13, 18–45.

    Google Scholar 

  34. Meltzer, L. (2007). Executive Function in Education: From Theory to Practice. New York: Guilford Publications.

    Google Scholar 

  35. Nelson, C.H., de Haan, M. & Thomas, K.M. (2006). Neuroscience of Cognitive Development. The Role of Experience and the Developing Brain. New Jersey: John Wiley & Sons.

    Google Scholar 

  36. Petrill, S. & Justice, L.M. (2007). Bridging the Gap Between Genomics and Education. Mind, Brain, and Education, 4 (1), 153–161.

  37. Posner, M.I. & Rothbarth, M.K. (2007). Educating the Human Brain. Washington: American Psychological Association.

  38. Ratey, J. (2008). Spark: The Revolutionary New Science of Exercise and the Brain. New York: Little, Brown and Company.

    Google Scholar 

  39. Rothbarth, M.K. & Posner, M.I. (2001). Mechanism and variation in the development of attentional networks. In C.A. Nelson & M. Luciana (Eds.). Handbook of developmental cognitive neuroscience (S. 353–363). Cambridge: The MIT Press.

  40. Saifer, S. (2007) Tools of the Mind – A Vygotskian-inspired early childhood curriculum. Paper presented at the 17th Annual Conference of the European Early Childhood Education Research Association, Prague: Czech Republic.

  41. Spitzer, M. (2005). Vorsicht Bildschirm. Elektronische Medien, Gehirnentwicklung, Gesundheit und Gesellschaft. Stuttgart: Klett.

  42. Spitzer, M. (2003). Medizin für die Schule. Plädoyer für eine evidenzbasierte Pädagogik. Nervenheilkunde, 22, 427–431.

    Google Scholar 

  43. Spitzer, M. (2002). Lernen. Gehirnforschung und die Schule des Lebens. Heidelberg: Spektrum.

  44. Stroth, S., Kubesch, S., Dieterle, K., Ruchsow, M., Heim, R. & Kiefer, M. (2009). Physical fitness, but not acute exercise modulates event-related potentials indices for executive control in healthy adolescents. Brain Research, 1269, 114–124.

    Google Scholar 

  45. Themanson, J.R. & Hillman, C.H. (2006). Cardiorespiratory fitness and acute aerobic exercise effects on neuroelectric and behavioral measures of action monitoring. Neuroscience, 141 (2), 757–767.

    Google Scholar 

  46. Valdez, P., Reilly, T. & Waterhouse, J. (2008). Rhythms of Mental Performance. Mind, Brain, Education, 2 (1), 7–16.

  47. Zelazo, P.D., Müller, U., Frye, D. & Marcovitch, S. (2003). The development of executive function. Monographs of the Society for Research in Child Development, 68, 1–27.

    Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Kubesch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubesch, S., Walk, L. Körperliches und kognitives Training exekutiver Funktionen in Kindergarten und Schule. Sportwiss 39, 309–317 (2009). https://doi.org/10.1007/s12662-009-0079-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12662-009-0079-2

Schlüsselwörter

Keywords

Navigation