Skip to main content

Advertisement

Log in

IoV-fog-cloud framework for road anomalies detection using SVM-nAVDD approach

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

The detection of road anomalies in highway management is a crucial yet manpower-demanding task. Although there have been many previous types of research based on visual and acceleration data collected from vehicles. However, to distinctively differentiate a pothole and speedbump from acceleration remains a challenge. The visual methods require high computation supported by expensive GPUs. This paper proposes a novel contribution to depth detection using angular velocity for pothole detection. The solution is accorded by three-layer architecture inclusive of fog-based cloud infrastructure where each layer performs a respective function based on computing capability. The data acquisition is accomplished using an IoV setup equipped with M8N GPS, and MPU-6050 mounted on an Arduino MEGA 2560. The results are compared with the state-of-art algorithms and methodologies. The proposed SVM-nAVDD achieved the precision of 0.9092–0.9123 for the tested datasets and depth/height detection with 92% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbas MT, Muhammad A, Song WC (2020) SD-IoV: SDN enabled routing for internet of vehicles in road-aware approach. J Ambient Intell Human Comput 11(3):1265–1280

    Article  Google Scholar 

  • Aslanpour MS, Dashti SE, Ghobaei-Arani M et al (2018) Resource provisioning for cloud applications: a 3-D, provident and flexible approach. J Supercomput 74(12):6470–6501

    Article  Google Scholar 

  • Bhola J, Soni S, Cheema GK (2020) Genetic algorithm based optimized leach protocol for energy efficient wireless sensor networks. J Ambient Intell Human Comput 11(3):1281–1288

    Article  Google Scholar 

  • Carlos MR, Aragón ME, González LC et al (2018) Evaluation of detection approaches for road anomalies based on accelerometer readings-addressing who’s who. IEEE Trans Intell Transp Syst 19(10):3334–3343

    Article  Google Scholar 

  • Dong H, Song K, Wang Q et al (2021) Deep metric learning-based for multi-target few-shot pavement distress classification. IEEE Trans Ind Inform 18(3):1801–1810

    Article  Google Scholar 

  • Egaji OA, Evans G, Griffiths MG et al (2021) Real-time machine learning-based approach for pothole detection. Expert Syst Appl 184(115):562

    Google Scholar 

  • El-Wakeel AS, Li J, Noureldin A et al (2018) Towards a practical crowdsensing system for road surface conditions monitoring. IEEE Internet Things J 5(6):4672–4685

    Article  Google Scholar 

  • Fox A, Kumar BV, Chen J et al (2017) Multi-lane pothole detection from crowdsourced undersampled vehicle sensor data. IEEE Trans Mob Comput 16(12):3417–3430

    Article  Google Scholar 

  • Ghosh A, Mukherjee A, Misra S (2021) Sega: secured edge gateway microservices architecture for IIoT-based machine monitoring. IEEE Trans Ind Inform 18(3):1949–1956

    Article  Google Scholar 

  • González LC, Moreno R, Escalante HJ et al (2017) Learning roadway surface disruption patterns using the bag of words representation. IEEE Trans Intell Transp Syst 18(11):2916–2928

    Article  Google Scholar 

  • Highways Mort (2021) Ministry of Road Transport annual report 2020–2021. https://morth.nic.in/sites/default/files/Annual%20Report%20-%202021%20(English)_compressed.pdf

  • Huang X, Yin C, Dadras S et al (2018) Adaptive rapid defect identification in ECPT based on k-means and automatic segmentation algorithm. J Ambient Intell Human Comput 1–18

  • Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall Inc., Upper Saddle River

    MATH  Google Scholar 

  • Javed A, Larijani H, Ahmadinia A et al (2016) Smart random neural network controller for HVAC using cloud computing technology. IEEE Trans Ind Inform 13(1):351–360

    Article  Google Scholar 

  • Kaur A, Sood SK et al (2022) Cloud-fog assisted energy efficient architectural paradigm for disaster evacuation. Inf Syst 107(101):732

    Google Scholar 

  • Kumar T, Acharya D, Lohani D (2022) Modeling IoT enabled classification system for road surface monitoring. In: 2022 14th International conference on communication systems & networks (COMSNETS), IEEE, p 836–841

  • Li J, Li T, Liu Z et al (2019) Secure deduplication system with active key update and its application in IoT. ACM Trans Intell Syst Technol (TIST) 10(6):1–21

    Google Scholar 

  • Li X, Wang Y, Zhang B et al (2020) PSDRNN: an efficient and effective HAR scheme based on feature extraction and deep learning. IEEE Trans Ind Inf 16(10):6703–6713

    Article  Google Scholar 

  • Liu L, Chen C, Qiu T et al (2018) A data dissemination scheme based on clustering and probabilistic broadcasting in VANETs. Veh Commun 13:78–88

    Google Scholar 

  • Madli R, Hebbar S, Pattar P et al (2015) Automatic detection and notification of potholes and humps on roads to aid drivers. IEEE Sens J 15(8):4313–4318

    Article  Google Scholar 

  • Narmatha C, Eljack SM, Tuka AARM et al (2020) A hybrid fuzzy brain-storm optimization algorithm for the classification of brain tumor MRI images. J Ambient Intell Human Comput pp 1–9

  • Pandey AK, Iqbal R, Maniak T et al (2022) Convolution neural networks for pothole detection of critical road infrastructure. Comput Electr Eng 99(107):725

    Google Scholar 

  • Park SS, Tran VT, Lee DE (2021) Application of various yolo models for computer vision-based real-time pothole detection. Appl Sci 11(23):11229

    Article  Google Scholar 

  • Pratama ID, Sudibyo RW, et al (2021) Design and implementation of real-time pothole detection using convolutional neural network for IoT smart environment. In: 2021 International electronics symposium (IES), IEEE, p 675–679

  • Qaddoura R, Faris H, Aljarah I (2021) An efficient evolutionary algorithm with a nearest neighbor search technique for clustering analysis. J Ambient Intell Human Comput 12(8):8387–8412

    Article  Google Scholar 

  • Shahidinejad A, Ghobaei-Arani M, Esmaeili L (2020) An elastic controller using colored petri nets in cloud computing environment. Clust Comput 23(2):1045–1071

    Article  Google Scholar 

  • Shahidinejad A, Ghobaei-Arani M, Masdari M (2021) Resource provisioning using workload clustering in cloud computing environment: a hybrid approach. Clust Comput 24(1):319–342

    Article  Google Scholar 

  • Sledge IJ, Bezdek JC, Havens TC et al (2010) Relational generalizations of cluster validity indices. IEEE Trans Fuzzy Syst 18(4):771–786

    Article  Google Scholar 

  • Sood SK, Rawat KS (2022) Fog-assisted virtual reality-based learning framework to control panic. Expert Syst 39(4):e12700

    Article  Google Scholar 

  • Sood SK, Kumar N, Saini M (2021) Scientometric analysis of literature on distributed vehicular networks: vosviewer visualization techniques. Artif Intell Rev 54(8):6309–6341

    Article  Google Scholar 

  • Sood SK, Rawat KS, Kumar D (2022) A visual review of artificial intelligence and industry 4.0 in healthcare. Comput Electr Eng 101:107948

    Article  Google Scholar 

  • Tao S, Zhang X, Cai H et al (2018) Gait based biometric personal authentication by using mems inertial sensors. J Ambient Intell Human Comput 9(5):1705–1712

    Article  Google Scholar 

  • Tu W, Mai K, Zhang Y et al (2020) Real-time route recommendations for e-taxies leveraging GPS trajectories. IEEE Trans Ind Inf 17(5):3133–3142

    Article  Google Scholar 

  • Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52

    Article  Google Scholar 

  • Zheng Y (2015) Trajectory data mining: an overview. ACM Trans Intell Syst Technol (TIST) 6(3):1–41

    Article  Google Scholar 

  • Zheng Z, Zhou M, Chen Y et al (2020) A fused method of machine learning and dynamic time warping for road anomalies detection. IEEE Trans Intell Transport Syst 23:827–839

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navin Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Sood, S. & Saini, M. IoV-fog-cloud framework for road anomalies detection using SVM-nAVDD approach. J Ambient Intell Human Comput 14, 10899–10915 (2023). https://doi.org/10.1007/s12652-022-04358-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-022-04358-y

Keywords

Navigation