Skip to main content
Log in

A high accuracy segmentation method for retinal blood vessel detection based on hybrid filters and an adaptive thresholding

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

The field of computer-assisted retinal vascular segmentation is crucial since it aids in the diagnosis of disorders like diabetic retinopathy. The segmentation of retinal images deals with several problems, including the appearance of pseudo vascularization, difficulty in detecting thin vessels, and the enhancement of low-resolution images. This study aims to propose a new unsupervised method for retinal vascular segmentation that ensures high accuracy detection comparatively with previous studies. The proposed method can achieve good performance without prior training or turning. It is based on an efficient hybrid combination of many well-known intensity transformations and filters, followed by an adaptive thresholding algorithm. Firstly, contrast limited adaptive histogram equalization (CLAHE) and bottom-hat (BTH) filtering are applied to increase the contrast between the vascular and the fundus. To bring up the vessel tree structure against a non-uniform image background, a Jerman filtering is performed. Then, reconstruction processes, bowler-hat (BLH) filtering, and the generated field of view (FoV) mask are applied to preserve image details and remove any noise. Finally, an adaptive threshold is used to classify vessel and non-vessel pixels. The impact of the proposed segmentation model has been evaluated on the open-access STARE and DRIVE databases, reaching an accuracy index of 0.9618 and 0.9586, and a specificity index of 0.9810 and 0.9874, respectively. The suggested segmentation method proved more accurate and more efficient than the results of some other current methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdulsahib AA, Mahmoud MA, Mohammed MA, Rasheed HH, Mostafa SA, Maashi MS (2021) Comprehensive review of retinal blood vessel segmentation and classification techniques: intelligent solutions for green computing in medical images, current challenges, open issues, and knowledge gaps in fundus medical images. Netw. Model. Anal. Health Inform. Bioinform. 10(1):1–32

    Article  Google Scholar 

  • Azzopardi G, Strisciuglio N, Vento M, Petkov N (2015) Trainable cosfire filters for vessel delineation with application to retinal images. Med Image Anal 19(1):46–57

    Article  PubMed  Google Scholar 

  • Bala A, Chana I (2015) Intelligent failure prediction models for scientific workflows. Expert Syst Appl 42(3):980–989

    Article  Google Scholar 

  • Balasubramanian K, Ananthamoorthy N (2021) Robust retinal blood vessel segmentation using convolutional neural network and support vector machine. J Ambient Intell Humaniz Comput 12(3):3559–3569

    Article  Google Scholar 

  • Bardozzo F, De La Osa B, Horanská L, Fumanal-Idocin J, delli Priscoli M, Troiano L, Tagliaferri R, Fernandez J, Bustince H (2021) Sugeno integral generalization applied to improve adaptive image binarization. Inf Fusion 68:37–45

  • Bradley D, Roth G (2007) Adaptive thresholding using the integral image. J Graph Tools 12(2):13–21

    Article  Google Scholar 

  • Chow C, Kaneko T (1972) Automatic boundary detection of the left ventricle from cineangiograms. Comput Biomed Res 5(4):388–410

    Article  CAS  PubMed  Google Scholar 

  • Da Rocha DA, Barbosa ABL, Guimarães DS, Gregório LM, Gomes LHN, da Silva Amorim L, Peixoto ZMA (2020) An unsupervised approach to improve contrast and segmentation of blood vessels in retinal images using clahe, 2d gabor wavelet, and morphological operations. Res Biomed Eng 36(1):67–75

    Article  Google Scholar 

  • da Rosa JH, Barbosa JL, Ribeiro GD (2016) Oracon: an adaptive model for context prediction. Expert Syst Appl 45:56–70

    Article  Google Scholar 

  • Deledalle CA, Denis L, Tupin F (2009) Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans Image Process 18(12):2661–2672

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  • Demirkaya O, Asyali MH, Sahoo PK (2008) Image processing with MATLAB: applications in medicine and biology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Dimuro GP, Fernández J, Bedregal B, Mesiar R, Sanz JA, Lucca G, Bustince H (2020) The state-of-art of the generalizations of the Choquet integral: from aggregation and pre-aggregation to ordered directionally monotone functions. Inf Fusion 57:27–43

    Article  Google Scholar 

  • Dupont D, Barbosa JLV, Alves BM (2020) Chspam: a multi-domain model for sequential pattern discovery and monitoring in contexts histories. Pattern Anal Appl 23(2):725–734

    Article  Google Scholar 

  • Erdt M, Raspe M, Suehling M (2008) Automatic hepatic vessel segmentation using graphics hardware. In: International workshop on medical imaging and virtual reality. Springer, pp 403–412

  • Fathi A, Naghsh-Nilchi AR (2013) Automatic wavelet-based retinal blood vessels segmentation and vessel diameter estimation. Biomed Signal Process Control 8(1):71–80

    Article  Google Scholar 

  • Filippetto AS, Lima R, Barbosa JLV (2021) A risk prediction model for software project management based on similarity analysis of context histories. Inf Softw Technol 131:106497

    Article  Google Scholar 

  • Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 130–137

  • Fraz MM, Barman SA, Remagnino P, Hoppe A, Basit A, Uyyanonvara B, Rudnicka AR, Owen CG (2012) An approach to localize the retinal blood vessels using bit planes and centerline detection. Comput Methods Programs Biomed 108(2):600–616

    Article  CAS  PubMed  Google Scholar 

  • Hoover AD, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210

    Article  CAS  PubMed  Google Scholar 

  • Jerman T, Pernuš F, Likar B, Špiclin Ž (2016) Enhancement of vascular structures in 3D and 2D angiographic images. IEEE Trans Med Imaging 35(9):2107–2118

    Article  PubMed  Google Scholar 

  • Khawaja A, Khan TM, Naveed K, Naqvi SS, Rehman NU, Nawaz SJ (2019) An improved retinal vessel segmentation framework using Frangi filter coupled with the probabilistic patch based denoiser. IEEE Access 7:164344–164361

    Article  Google Scholar 

  • Khomri B, Christodoulidis A, Djerou L, Babahenini MC, Cheriet F (2018) Retinal blood vessel segmentation using the elite-guided multi-objective artificial bee colony algorithm. IET Image Process 12(12):2163–2171

    Article  Google Scholar 

  • Koschan A, Abidi MA (2008) Digital color image processing. Wiley-Interscience, New York

    Book  Google Scholar 

  • Lázár I, Hajdu A (2015) Segmentation of retinal vessels by means of directional response vector similarity and region growing. Comput Biol Med 66:209–221

    Article  PubMed  Google Scholar 

  • Lei T, Jia X, Zhang Y, He L, Meng H, Nandi AK (2018) Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans Fuzzy Syst 26(5):3027–3041

    Article  Google Scholar 

  • Li Q, Sone S, Doi K (2003) Selective enhancement filters for nodules, vessels, and airway walls in two-and three-dimensional CT scans. Med Phys 30(8):2040–2051

    Article  PubMed  Google Scholar 

  • Mahtab S, Hossein P (2022) An active contour model using matched filter and hessian matrix for retinal vessels segmentation. Turk J Electr Eng Comput Sci 30(1):295–311

    Article  Google Scholar 

  • Meleppat RK, Miller EB, Manna SK, Zhang P, Pugh EN Jr, Zawadzki RJ (2019) Multiscale Hessian filtering for enhancement of OCT angiography images. In: Ophthalmic technologies XXIX, vol 10858. International Society for Optics and Photonics, p 108581K

  • Mookiah MRK, Hogg S, MacGillivray TJ, Prathiba V, Pradeepa R, Mohan V, Anjana RM, Doney AS, Palmer CN, Trucco E (2021) A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification. Med Image Anal 68:101905

    Article  PubMed  Google Scholar 

  • Neto LC, Ramalho GL, Neto JFR, Veras RM, Medeiros FN (2017) An unsupervised coarse-to-fine algorithm for blood vessel segmentation in fundus images. Expert Syst Appl 78:182–192

    Article  Google Scholar 

  • Oliveira WS, Teixeira JV, Ren TI, Cavalcanti GD, Sijbers J (2016) Unsupervised retinal vessel segmentation using combined filters. PLoS One 11(2):e0149943

    Article  PubMed  PubMed Central  Google Scholar 

  • Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, ter Haar Romeny B, Zimmerman JB, Zuiderveld K (1987) Adaptive histogram equalization and its variations. Comput Vis Graph Image Process 39(3):355–368

    Article  Google Scholar 

  • Qureshi I, Ma J, Abbas Q (2019) Recent development on detection methods for the diagnosis of diabetic retinopathy. Symmetry 11(6):749

    Article  ADS  Google Scholar 

  • Rosa JH, Barbosa JL, Kich M, Brito L (2015) A multi-temporal context-aware system for competences management. Int J Artif Intell Educ 25(4):455–492

    Article  Google Scholar 

  • Roy S, Mitra A, Roy S, Setua SK (2019) Blood vessel segmentation of retinal image using Clifford matched filter and Clifford convolution. Multimed Tools Appl 78(24):34839–34865

    Article  Google Scholar 

  • Saravanan V, Samuel R, Krishnamoorthy S, Manickam A (2022) Deep learning assisted convolutional auto-encoders framework for glaucoma detection and anterior visual pathway recognition from retinal fundus images. J Ambient Intell Humanized Comput 1868–5145:1–11

    Google Scholar 

  • Sato Y, Westin CF, Bhalerao A, Nakajima S, Shiraga N, Tamura S, Kikinis R (2000) Tissue classification based on 3D local intensity structures for volume rendering. IEEE Trans Vis Comput Graph 6(2):160–180

    Article  Google Scholar 

  • Sazak Ç, Nelson CJ, Obara B (2019) The multiscale bowler-hat transform for blood vessel enhancement in retinal images. Pattern Recogn 88:739–750

    Article  ADS  Google Scholar 

  • Shah SAA, Shahzad A, Khan MA, Lu CK, Tang TB (2019) Unsupervised method for retinal vessel segmentation based on Gabor wavelet and multiscale line detector. IEEE Access 7:167221–167228

    Article  Google Scholar 

  • Solomon C, Breckon T (2011) Fundamentals of digital image processing: a practical approach with examples in Matlab. Wiley, New York

    Google Scholar 

  • Soomro TA, Gao J, Lihong Z, Afifi AJ, Soomro S, Paul M (2018) Retinal blood vessels extraction of challenging images. In: Australasian conference on data mining. Springer, pp 347–359

  • Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509

    Article  PubMed  Google Scholar 

  • Voorn M, Exner U, Rath A (2013) Multiscale hessian fracture filtering for the enhancement and segmentation of narrow fractures in 3D image data. Comput Geosci 57:44–53

    Article  ADS  Google Scholar 

  • Wang W, Wang W, Hu Z (2019) Retinal vessel segmentation approach based on corrected morphological transformation and fractal dimension. IET Image Process 13(13):2538–2547

    Article  Google Scholar 

  • Wang J, Li YJ, Yang KF (2021) Retinal fundus image enhancement with image decomposition and visual adaptation. Comput Biol Med 128:104116

    Article  PubMed  Google Scholar 

  • Zhang X, Wandell BA (1997) A spatial extension of CIELAB for digital color-image reproduction. J Soc Inform Display 5(1):61–63

    Article  Google Scholar 

  • Zhang J, Dashtbozorg B, Bekkers E, Pluim JP, Duits R, ter Haar Romeny BM (2016) Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans Med Imaging 35(12):2631–2644

    Article  PubMed  Google Scholar 

  • Zhao Y, Rada L, Chen K, Harding SP, Zheng Y (2015) Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans Med Imaging 34(9):1797–1807

    Article  PubMed  Google Scholar 

  • Zhao Y, Zhao J, Yang J, Liu Y, Zhao Y, Zheng Y, Xia L, Wang Y (2017) Saliency driven vasculature segmentation with infinite perimeter active contour model. Neurocomputing 259:201–209 (multimodal media data understanding and analytics)

    Article  Google Scholar 

  • Zhou C, Chan HP, Sahiner B, Hadjiiski LM, Chughtai A, Patel S, Wei J, Ge J, Cascade PN, Kazerooni EA (2007) Automatic multiscale enhancement and segmentation of pulmonary vessels in CT pulmonary angiography images for CAD applications. Med Phys 34(12):4567–4577

    Article  PubMed  Google Scholar 

  • Zuiderveld K (1994) Contrast limited adaptive histogram equalization. Academic Press Professional Inc, New York, pp 474–485

    Google Scholar 

Download references

Funding

There is no funding for this study

Author information

Authors and Affiliations

Authors

Contributions

All the authors have participated in writing the manuscript and have revised the final version. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Djamel Eddine Chouaib Belkhiat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors

Informed consent

Informed consent was obtained from all individual participants included in the original study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehidi, I., Belkhiat, D.E.C. & Jabri, D. A high accuracy segmentation method for retinal blood vessel detection based on hybrid filters and an adaptive thresholding. J Ambient Intell Human Comput 15, 323–335 (2024). https://doi.org/10.1007/s12652-022-03893-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-022-03893-y

Keywords

Navigation