Skip to main content
Log in

Ocular Artifacts realization through optimized scheme

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Brain Computer Interface (BCI) recommended for online real-time processing of EEG signals. Hence, the recording system’s accuracy improved by nullifying of developed artifacts. The goal of the proposed work is to develop an optimized model for detecting and minimizing ocular artifacts. In the proposed work, Discrete Wavelet Transform (DWT) and Pisarenko harmonic decomposition are used for decomposing the signals. Then the features are extracted by Principal Component Analysis (PCA) and Independent Component Analysis (ICA) techniques. After feature collection, an Optimized Deformable Convolutional Network (ODCN) is used for the recognition of ocular artifacts from EEG input signals. When artifacts are sensed, the moderation method is executed by applying Empirical Mean Curve Decomposition (EMCD) followed by ODCN for noise optimization in EEG signals. Conclusively, the spotless signal is reconstructed by an application of inverse EMCD. The proposed method has achieved a higher performance than that of conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Betta M, Gemignani A, Landi A, Laurino M, Piaggi P, Menicucci D (2013) Detection and removal of ocular artifacts from EEG signals for an automated REM sleep analysis. IEEE Eng Med Biol Soc 2013:5079–5082

    Google Scholar 

  • De Fallani FV, Astolfi L, Cincotti F, Mattia D, la Rocca D, Maksuti E, Salinari S, Babiloni F, Vegso B, Kozmann G, Nagy Z (2009) Evaluation of the brain network organization From EEG signals: a preliminary evidence in stroke patient. Neuroplast Neurogen 292(12):2023–2031

    Google Scholar 

  • Gajbhiye P, Tripathy RK, Bhattacharyya A, Pachori RB (2019) Novel approaches for the removal of motion artifact from EEG recordings. IEEE Sensors J 19(22):10600–10608

    Article  Google Scholar 

  • Jafarifarmand A, Badamchizadeh MA, Khanmohammadi S, Nazari MA, Tazehkand BM (2017) Real-time ocular artifacts removal of EEG data using a hybrid ICA-ANC approach. Biomed Signal Process Control 31:199–210

    Article  Google Scholar 

  • Jaffino G, Jose JP, Sundaram M (2021) Grey wolf optimization with deep recurrent neural network for epileptic seizure detection in EEG signals. In: 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), pp 1–5

  • Kanoga S, Kanemura A, Asoh H (2019) Multi-scale dictionary learning for ocular artifact reduction from single-channel electroencephalograms. Neurocomputing 347:240–250

    Article  Google Scholar 

  • Li X, Guan C, Zhang H, Ang KK (2017) Discriminative ocular artifact correction for feature learning in EEG analysis. IEEE Trans Biomed Eng 64(8):1906–1913

    Article  Google Scholar 

  • Lui CWK, So HC (2004) Reformulation of Pisarenko harmonic decomposition method for single-tone frequency estimation. Signal Process 52:1128–1135

    MathSciNet  MATH  Google Scholar 

  • Maddirala AK, Shaik RA (2016) Removal of EOG artifacts from single channel EEG signals using combined singular spectrum analysis and adaptive noise canceler. IEEE Sensors J 16(23):8279–8287

    Google Scholar 

  • Mahajan R, Morshed BI (2015) Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy, kurtosis, and wavelet-ICA. IEEE J Biomed Health Inform 19(1):158–165

    Article  Google Scholar 

  • Mamun M, Al-Kadi M, Marufuzzaman M (2013) Effectiveness of wavelet denoising on electroencephalogram signals. J Appl Res Technol 11:156–160

    Article  Google Scholar 

  • Mashhadi N, Khuzani AZ, Heidari M, Khaledyan D (2020) Deep learning denoising for EOG artifacts removal from EEG signals. IEEE Global Humanitarian Technology Conference, pp 1–6

  • Metsomaa J, Sarvas J, Ilmoniemi RJ (2017) Blind source separation of event-related EEG/MEG. IEEE Trans Biomed Eng 64(9):2054–2064

    Article  Google Scholar 

  • Mishra A, Bhateja V, Gupta A, Mishra A, Satapathy SC (2019) Feature fusion and classification of EEG/EOG signals. Soft Computing and Signal Processing, pp 793–799

  • Mosquera GC, Navia-Vazquez A (2009) Automatic removal of ocular artifacts from EEG data using adaptive filtering and independent component analysis. In: European Signal Processing Conference

  • Peng H, Hu B, Shi Q, Ratcliffe M, Zhao Q, Qi Y, Gao G (2013) Removal of ocular artifacts in EEG-an improved approach combining DWT and ANC for portable applications. IEEE J Biomed Health Info 17(3):600–609

    Article  Google Scholar 

  • Quazi MH, Kahalekar SG (2017) Artifacts removal from EEG signal: FLM optimization-based learning algorithm for neural network-enhanced adaptive filtering. Biocybern Biomed Eng 37(3):401–411

    Article  Google Scholar 

  • Rambabu C, Murthy BR (2014) EEG signal with feature extraction using SVM and ICA classifiers. Int J Comput Appl 85(3):1–7

    Google Scholar 

  • Sai CY, Mokhtar N, Arof H, Cumming P, Iwahashi M (2018) Automated classification and removal of EEG artifacts With SVM and wavelet-ICA. IEEE J Biomed Health Inform 22(3):664–670

    Article  Google Scholar 

  • Sarin M, Verma A, Mehta DH, Kumar Shukla P, Verma S (2020) Automated ocular artifacts identification and removal from EEG data using hybrid machine learning methods. In: 2020 7th International Conference on Signal Processing and Integrated Networks, pp 1054–1059

  • Selvan S, Srinivasan R (2009) Removal of ocular artifacts from EEG using an efficient neural network based adaptive filtering technique. IEEE Signal Process Lett 6(12):330–332

    Article  Google Scholar 

  • Selvan S, Srinivasan R (2015) Removal of ocular artifacts from EEG Using an efficient neural network based adaptive filtering technique. IEEE Signal Process Lett 6(12):330–332

    Article  Google Scholar 

  • Shaker MM (2007) EEG waves classifier using wavelet transform and Fourier transform. World Academy of Science, Engineering and Technology, vol 3

  • Shao SY, Shen K-Q, Ong CJ, Wilder-Smith EPV (2009) Automatic EEG artifact removal: a weighted support vector machine approach with error correction. IEEE Trans Biomed Eng 56(2):336–344

    Article  Google Scholar 

  • Shoker L, Sanei S, Chambers J et al (2005) Artifact removal from electroencephalograms using a hybrid BSS-SVM algorithm. IEEE Signal Process Lett 12(10):721–724

    Article  Google Scholar 

  • Sreeja SR, Sahay RR, Samanta D, Mitra P (2018) Removal of eye blink artifacts from EEG signals using sparsity. IEEE J Biomed Health Inform 22(5):1362–1372

    Article  Google Scholar 

  • Subasi A, Gursoy MI (2010) EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl 37(12):8659–8666

    Article  Google Scholar 

  • Sun L, Liu Y, Beadle PJ (2005) Independent component analysis of EEG signals. In: Proceedings of 2005 IEEE International Workshop on VLSI Design and Video Technology, pp 219–222

  • Ter Braack EM, de Jonge B, van Putten MJAM (2013) Reduction of TMS induced artifacts in EEG using principal component analysis. IEEE Trans Neural Syst Rehabil Eng 21(3):376–382

    Article  Google Scholar 

  • Wang G, Teng C, Li K, Zhang Z, Yan X (2016) The removal of EOG artifacts from EEG signals using independent component analysis and multivariate empirical mode decomposition. IEEE J Biomed Health Inform 20(5):1301–1308

    Article  Google Scholar 

  • Yang B, Duan K, Fan C, Hu C, Wang J (2018) Automatic ocular artifacts removal in EEG using deep learning. Biomed Signal Processing Control 43:148–158

    Article  Google Scholar 

  • Yang C, Chen S, Wang Y, Zhang J (2019) The evaluation of DCNN on Vector-SIMD DSP. IEEE Access 7:22301–22309

    Article  Google Scholar 

  • Yilmaz S, Sen S (2020) Electric fish optimization: a new heuristic algorithm inspired by electrolocation. Neural Comput Appl 32:11543–11578

    Article  Google Scholar 

  • Zeng H, Song A, Yan R, Qin H (2013) EOG artifact correction from EEG recording using stationary subspace analysis and empirical mode decomposition. Signal Process 13(11):14839–14859

    Google Scholar 

  • Zeng N, Wang Z, Zineddin B, Li Y, Du M, Xiao L, Liu X, Young T (2014) Image-based quantitative analysis of gold immunochromatographic strip via cellular neural network approach. IEEE Trans Med Imaging 33(5):1129–1136. https://doi.org/10.1109/TMI.2014.2305394 (PMID: 24770917)

    Article  Google Scholar 

  • Zeng N, Song D, Li H, You Y, Liu Y, Alsaadi F (2020a) A competitive mechanism integrated multi-objective whale optimization algorithm with differential evolution. Neurocomputing 432:170–182. https://doi.org/10.1016/j.neucom.2020.12.065

    Article  Google Scholar 

  • Zeng N, Wang Z, Liu W, Zhang H, Hone K, Liu X (2020b) A dynamic neighborhood-based switching particle swarm optimization algorithm. IEEE Trans Cybernetics. https://doi.org/10.1109/TCYB.2020.3029748

    Article  Google Scholar 

  • Zou Y, Nathan V, Jafari R (2016) Automatic identification of artifact-related independent components for artifact removal in EEG recordings. IEEE J Biomed Health Inform 20(1):73–81

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Sahoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S.K., Mohapatra, S.K. Ocular Artifacts realization through optimized scheme. J Ambient Intell Human Comput 14, 13269–13283 (2023). https://doi.org/10.1007/s12652-022-03783-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-022-03783-3

Keywords

Navigation