Skip to main content
Log in

MRI de-noising using improved unbiased NLM filter

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

The magnetic resonance images focus on soft tissues, and it is often necessary for healthcare professionals to reach the final conclusion in clinical diagnosis. However, these images are often affected by random noise, which decreases the visual quality and reliability of the images. This paper presents an improved unbiased non-local mean (NLM) filter to solve the de-noising issue in the MRI images. Local statistics of the noise is combined with the NLM filter to design an unbiased NLM filter. First of all, the Gaussian noise information is extracted from the noisy image by performing the wavelet decomposition, statistically modeling the diagonal sub-band wavelet coefficients, and estimating the noise variance by applying the median absolute deviation (MAD) estimator. Next, the Rician noise is removed by applying a NLM filter which averages the noisy pixels by a Gaussian weight factor. Finally, the NLM filtered output pixels are unbiased by applying the noise bias subtraction method for recovering the original pixel values. Our experiments on real MRI and synthetic images demonstrate that promising results that can be obtained much superior than results estimated using existing non-local mean filtering schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

No data were used to support this study.

References

  • Anila S, Sivaraju S, Devarajan N (2017) A new contourlet based multiresolution approximation for MRI image noise removal. Natl Acad Sci Lett 40(1):39–41

    Article  Google Scholar 

  • Bhadauria H, Dewal M (2013) Medical image denoising using adaptive fusion of curvelet transform and total variation. Comput Electric Eng 39(5):1451–1460

    Article  Google Scholar 

  • Buades A, Coll B, Morel JM (2005) A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on computer vision and pattern recognition (CVPR’05), IEEE, vol 2, pp 60–65

  • Chen K, Lin X, Hu X, Wang J, Zhong H, Jiang L (2020) An enhanced adaptive non-local means algorithm for Rician noise reduction in magnetic resonance brain images. BMC Med Imaging 20(1):1–9

    Article  Google Scholar 

  • Das P, Pal C, Chakrabarti A, Acharyya A, Basu S (2020) Adaptive denoising of 3d volumetric MR images using local variance based estimator. Biomed Signal Process Control 59:101901

    Article  Google Scholar 

  • Gonzalez R, Woods R (2002) Digital image processing, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Hamarneh G, Hradsky J (2007) Bilateral filtering of diffusion tensor magnetic resonance images. IEEE Trans Image Process 16(10):2463–2475

    Article  MathSciNet  Google Scholar 

  • Hanchate V, Joshi K (2020a) Denoising of MRI images using fast NLM. J Electric Eng Comput Sci (IJEECS) 18(1):135–141

    Google Scholar 

  • Hanchate V, Joshi K (2020b) MRI denoising using bm3d equipped with noise invalidation denoising technique and VST for improved contrast. SN Appl Sci 2(2):1–8

    Article  Google Scholar 

  • He L, Greenshields IR (2008) A nonlocal maximum likelihood estimation method for Rician noise reduction in MR images. IEEE Trans Med Imaging 28(2):165–172

    Google Scholar 

  • Heo YC, Kim K, Lee Y (2020) Image denoising using non-local means (NLM) approach in magnetic resonance (MR) imaging: a systematic review. Appl Sci 10(20):7028

    Article  Google Scholar 

  • Hong D, Huang C, Yang C, Li J, Qian Y, Cai C (2020) FFA-DMRI: a network based on feature fusion and attention mechanism for brain MRI denoising. Front Neurosci 14:934

    Article  Google Scholar 

  • Kagoiya K, Mwangi E (2017) A hybrid and adaptive non-local means wavelet based MRI denoising method with bilateral filter enhancement. Int J Comput Appl 166:1–7

    Google Scholar 

  • Kanoun B, Ambrosanio M, Baselice F, Ferraioli G, Pascazio V, Gómez L (2020) Anisotropic weighted KS-NLM filter for noise reduction in MRI. IEEE Access 8:184866–184884

    Article  Google Scholar 

  • Kollem S, Rama Linga Reddy K, Srinivasa Rao D (2020) Modified transform-based gamma correction for MRI tumor image denoising and segmentation by optimized Histon-based elephant herding algorithm. Int J Imaging Syst Technol 30(4):1271–1293

    Article  Google Scholar 

  • Krissian K, Aja-Fernández S (2009) Noise-driven anisotropic diffusion filtering of MRI. IEEE Trans Image Process 18(10):2265–2274

    Article  MathSciNet  MATH  Google Scholar 

  • Leal N, Zurek E, Leal E (2020) Non-local SVD denoising of MRI based on sparse representations. Sensors 20(5):1536

    Article  Google Scholar 

  • Macovski A (1996) Noise in MRI. Magn Reson Med 36(3):494–497

    Article  Google Scholar 

  • Manjon J, Robles M, Thacker N (2007) Multispectral MRI de-noising using non-local means. Med Image Underst Anal (MIUA), pp 41–46

  • Manjón JV, Carbonell-Caballero J, Lull JJ, García-Martí G, Martí-Bonmatí L, Robles M (2008) MRI denoising using non-local means. Med Image Anal 12(4):514–523

    Article  Google Scholar 

  • McVeigh E, Henkelman R, Bronskill M (1985) Noise and filtration in magnetic resonance imaging. Med Phys 12(5):586–591

    Article  Google Scholar 

  • Nowak RD (1999) Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Trans Image Process 8(10):1408–1419

    Article  Google Scholar 

  • Osirix (2014) Osirix dicom image. http://www.osirix-viewercom/resources/diacom-image-library/. Accessed 13 Mar 2021

  • Rajan J, Arnold J, Sijbers J (2014) A new non-local maximum likelihood estimation method for Rician noise reduction in magnetic resonance images using the Kolmogorov-Smirnov test. Signal Process 103:16–23

    Article  Google Scholar 

  • Redpath TW (1998) Signal-to-noise ratio in MRI. Br J Radiol 71(847):704–707

    Article  Google Scholar 

  • Richardson JC, Bowtell RW, Mäder K, Melia CD (2005) Pharmaceutical applications of magnetic resonance imaging (MRI). Adv Drug Deliv Rev 57(8):1191–1209

    Article  Google Scholar 

  • Romdhane F, Villano D, Irrera P, Consolino L, Longo DL (2021) Evaluation of a similarity anisotropic diffusion denoising approach for improving in vivo CEST-MRI tumor pH imaging. Magn Reson Med 85(6):3479–3496

    Article  Google Scholar 

  • Sahu S, Singh HV, Kumar B, Singh AK (2018) Statistical modeling and Gaussianization procedure based de-speckling algorithm for retinal oct images. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-018-0823-2

    Article  Google Scholar 

  • Sahu S, Singh HV, Kumar B, Singh AK (2019a) De-noising of ultrasound image using Bayesian approached heavy-tailed Cauchy distribution. Multimed Tools Appl 78(4):4089–4106

    Article  Google Scholar 

  • Sahu S, Singh HV, Kumar B, Singh AK, Kumar P (2019b) Enhancement and de-noising of oct image by adaptive wavelet thresholding method. In: Singh AK, Mohan A (eds) Handbook of multimedia information security: techniques and applications. Springer, pp 449–471

    Chapter  Google Scholar 

  • Sahu S, Singh HV, Kumar B, Singh AK, Kumar P (2019c) Image processing based automated glaucoma detection techniques and role of de-noising: a technical survey. In: Singh AK, Mohan A (eds) Handbook of multimedia information security: techniques and applications. Springer, pp 359–375

    Chapter  Google Scholar 

  • Sahu S, Singh HV, Kumar B, Singh AK (2020a) A Bayesian multiresolution approach for noise removal in medical magnetic resonance images. J Intell Syst 29(1):189–201

    Google Scholar 

  • Sahu S, Singh HV, Singh AK, Kumar B (2020b) Mr image denoising using adaptive wavelet soft thresholding. In: Dutta D, Kar H, Kumar C, Bhadauria V (eds) Advances in VLSI, communication, and signal processing. Springer, pp 775–785

    Chapter  Google Scholar 

  • Sarkar S, Tripathi PC, Bag S (2020) An improved non-local means denoising technique for brain MRI. In: Das AK, Nayak J, Naik B, Pati SK, Pelusi D (eds) Computational intelligence in pattern recognition. Springer, pp 765–773

  • Sharma A, Chaurasia V (2021) Mri denoising using advanced NLM filtering with non-subsampled Shearlet transform. Signal Image Video Process 15:1–9

    Article  Google Scholar 

  • Sijbers J, den Dekker AJ, Van Audekerke J, Verhoye M, Van Dyck D (1998) Estimation of the noise in magnitude MR images. Magn Reson Imaging 16(1):87–90

    Article  Google Scholar 

  • Upadhyay P, Upadhyay S, Shukla K (2021) Magnetic resonance images denoising using a wavelet solution to Laplace equation associated with a new variational model. Appl Math Comput 400:126083

    MathSciNet  MATH  Google Scholar 

  • Xie D, Li Y, Yang H, Bai L, Wang T, Zhou F, Zhang L, Wang Z (2020) Denoising arterial spin labeling perfusion MRI with deep machine learning. Magn Reson Imaging 68:95–105

    Article  Google Scholar 

  • Zhu H, Li Y, Ibrahim JG, Shi X, An H, Chen Y, Gao W, Lin W, Rowe DB, Peterson BS (2009) Regression models for identifying noise sources in magnetic resonance images. J Am Stat Assoc 104(486):623–637

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, S., Anand, A., Singh, A.K. et al. MRI de-noising using improved unbiased NLM filter. J Ambient Intell Human Comput 14, 10077–10088 (2023). https://doi.org/10.1007/s12652-021-03681-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-021-03681-0

Keywords

Navigation