Skip to main content

LE2ML: a microservices-based machine learning workbench as part of an agnostic, reliable and scalable architecture for smart homes


Over the years, several architecture of smart home has been proposed to enable the use of ambient intelligence. However, the major issue with most of them lies in their lack of high reliability and scalability. Therefore, the first contribution of this paper introduces a novel distributed architecture for smart homes, inspired by private cloud architectures, which is reliable and scalable. This implementation aims at simplifying and encouraging both the deployment of new software components as well as their reutilization to achieve the activity recognition process inside smart homes. The second contribution of this paper is the introduction of the LIARA Environment for Modular Machine Learning (LE2ML), a new machine learning workbench. Its design relies on a microservices architecture to provide a better scalability as well as smaller and faster deployments. Experiments demonstrate that our architecture is resilient to both a node failure and a total power outage. Moreover, the workbench obtained similar results, as regards the performance of the recognition, when compared to previously proposed methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

  2. 2.

  3. 3.

  4. 4.

  5. 5.

  6. 6.

  7. 7.

  8. 8.

  9. 9.

  10. 10.

  11. 11.

  12. 12.

  13. 13.

  14. 14.

  15. 15.

  16. 16.

  17. 17.

  18. 18.

  19. 19.

  20. 20.

  21. 21.

  22. 22.

  23. 23.

  24. 24.

  25. 25.

  26. 26.

  27. 27.

  28. 28.

  29. 29.

  30. 30.


  1. Bae IH, Kim HG (2011) An ontology-based approach to ADL recognition in smart homes. In: International Conference on future generation communication and networking, Springer, Jeju Island, Korea 266:3 71–380.

  2. Bluestein LI (1970) A linear filtering approach to the computation of discrete Fourier transform. IEEE Trans Audio and Electroacoust 18(4):451–455.

    Article  Google Scholar 

  3. Bouchard K, Bouchard B, Bouzouane A (2014) Practical guidelines to build smart homes: lessons learned. In: Opportunistic networking, smart home, smart city, smart systems. CRC Press, Taylor & Francis, pp 1–37

  4. Bouchard K, Maitre J, Bertuglia C, Gaboury S (2020) Activity recognition in smart homes using uwb radars. Proc Comput Sci 170:10–17.

    Article  Google Scholar 

  5. Bouckaert RR, Frank E, Hall MA, Holmes G, Pfahringer B, Reutemann P, Witten IH (2010) WEKA—experiences with a java open-source project. J Mach Learn Res 11:2533–2541

    MATH  Google Scholar 

  6. Chapron K, Plantevin V, Thullier F, Bouchard K, Duchesne E, Gaboury S (2018) A more efficient transportable and scalable system for real-time activities and exercises recognition. Sensors.

    Article  Google Scholar 

  7. Chen L, Nugent C (2010) Situation aware cognitive assistance in smart homes. J Mob Multimed 6(3):263–280

    Google Scholar 

  8. Chen L, Nugent C, Mulvenna M, Finlay D, Hong X (2009) Semantic smart homes: towards knowledge rich assisted living environments. In: McClean S, Millard P, El-Darzi E, Nugent C (eds) Intelligent patient management. Springer, Berlin, pp 279–296.

    Chapter  Google Scholar 

  9. Chen L, Nugent C, Biswas J, Hoey J (2011) Activity recognition in pervasive intelligent environments. In: Atlantis ambient and pervasive intelligence. Atlantis Press.

  10. Chen L, Hoey J, Nugent CD, Cook DJ, Yu Z (2012) Sensor-based activity recognition. IEEE Trans Syst Man Cybernet.

    Article  Google Scholar 

  11. Chen M, Mao S, Liu Y (2014) Big data: A survey. Mob Netw Appl 19:171–209.

    Article  Google Scholar 

  12. Cook D, Youngblood M, Heierman E, Gopalratnam K, Rao S, Litvin A, Khawaja F (2003) MavHome: an agent-based smart home. In: Proceedings of the First IEEE International Conference on pervasive computing and communications (PerCom), IEEE, Fort Worth, TX, USA, pp 521–524,

  13. Cook DJ, Crandall AS, Thomas BL, Krishnan NC (2013) CASAS: a smart home in a box. Computer 46(7):62–69.

    Article  Google Scholar 

  14. Davis K, Owusu E, Bastani V, Marcenaro L, Hu J, Regazzoni C, Feijs L (2016) Activity recognition based on inertial sensors for ambient assisted living. In: FUSION 2016—19th International Conference on information fusion, proceedings, pp 371–378

  15. Demšar J, Zupan B, Leban G, Curk T (2004) Orange: from experimental machine learning to interactive data mining. Lecture Notes Comput Sci (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 3202:537–539.

    Article  Google Scholar 

  16. Demšar J, Curk T, Erjavec A, Gorup Č, Hočevar T, Milutinovič M, Možina M, Polajnar M, Toplak M, Starič A, Štajdohar M, Umek L, Žagar L, Žbontar J, Žitnik M, Zupan B (2013) Orange: data mining toolbox in python. J Mach Learn Res 14(1):2349–2353.

    Article  MATH  Google Scholar 

  17. Dikaiakos MD, Katsaros D, Mehra P, Pallis G, Vakali A (2009) Cloud computing: distributed internet computing for IT and scientific research. IEEE Internet Comput 13(5):10–11.

    Article  Google Scholar 

  18. Dragoni N, Giallorenzo S, Lafuente AL, Mazzara M, Montesi F, Mustafin R, Safina L (2017) Microservices: yesterday, today, and tomorrow. In: Mazzara M, Meyer B (eds) Present and ulterior software engineering. Springer, Berlin, pp 195–216.

    Chapter  Google Scholar 

  19. Dua D, Graff C (2017) UCI machine learning repository. Accessed 17 Nov 2020

  20. Fortin-Simard D, Bilodeau JS, Bouchard K, Gaboury S, Bouchard B, Bouzouane A (2015) Exploiting passive RFID technology for activity recognition in smart homes. IEEE Intell Syst 30(4):7–15.

    Article  Google Scholar 

  21. Ghaffarinejad A, Syrotiuk VR (2014) Load balancing in a campus network using software defined networking. In: Proceedings—2014 3rd GENI Research and Educational Experiment Workshop, GREE 2014, IEEE, Atlanta, GA, USA, pp 75–76,

  22. Giroux S, Leblanc T, Bouzouane A, Bouchard B, Pigot H, Bauchet J (2009) The praxis of cognitive assistance in smart homes. BMI Book, Ormond Beach, pp 183–211.

    Book  Google Scholar 

  23. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of Things (IoT): a vision, architectural elements, and future directions. Futur Gener Comput Syst 29(7):1645–1660.

    Article  Google Scholar 

  24. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. ACM SIGKDD Explor Newslett 11(1):10–18.

    Article  Google Scholar 

  25. Handa A, Sharma A, Shukla SK (2019) Machine learning in cybersecurity: a review. Wiley Interdiscipl Rev Data Min Knowl Discov.

    Article  Google Scholar 

  26. Helal S, Mann W, El-Zabadani H, King J, Kaddoura Y, Jansen E (2005) The Gator tech smart house: a programmable pervasive space. Computer 38(3):50–60.

    Article  Google Scholar 

  27. Hofmann M, Klinkenberg R (2014) RapidMiner: data mining use cases and business analytics applications. CRC Press, Taylor & Francis, Boca Raton

    Google Scholar 

  28. Holmes G, Donkin A, Witten IH (1994) WEKA: a machine learning workbench. In: Australian and New Zealand Conference on intelligent information systems—proceedings, pp 357–361,

  29. Hornik K, Buchta C, Zeileis A (2009) Open-source machine learning: R meets Weka. Comput Stat 24(2):225–232.

    MathSciNet  Article  MATH  Google Scholar 

  30. Hu P, Ning H, Chen L, Daneshmand M (2019) An open internet of things system architecture based on software-defined device. IEEE Internet Things J 6(2):2583–2592.

    Article  Google Scholar 

  31. Institute of Electrical and Electronics Engineers (1999) IEEE Std 1451.1-1999, IEEE Standard for a smart transducer interface for sensors and actuators—network capable application processor (NCAP) information model. In: IEEE,

  32. Jafarnejad Ghomi E, Masoud Rahmani A, Nasih Qader N (2017) Load-balancing algorithms in cloud computing: a survey. J Netw Comput Appl 88:50–71.

    Article  Google Scholar 

  33. Lago P, Lang F, Roncancio C, Jiménez-Guarín C, Mateescu R, Bonnefond N (2017) The contextact@a4h real-life dataset of daily-living activities. In: Brézillon P, Turner R, Penco C (eds) Modeling and using context, vol 10257. Springer, Berlin, pp 175–188.

    Chapter  Google Scholar 

  34. Langlois RE, Lu H (2008) Intelligible machine learning with malibu. In: Proceedings of the 30th Annual International Conference of the IEEE engineering in medicine and biology society, EMBS’08—“Personalized Healthcare through Technology”, pp 3795–3798,

  35. Larrañaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I, Lozano JA, Armañanzas R, Santafé G, Pérez A, Robles V (2006) Machine learning in bioinformatics. Brief Bioinform 7(1):86–112.

    Article  Google Scholar 

  36. MacKenzie CM, Laskey K, McCabe F, Brown PF, Metz R (2006) Reference model for service oriented architecture 1.0. OASIS Standard. OASIS Open 12:1–31

    Google Scholar 

  37. Mahalingam M, Dutt DG, Duda K, Agarwal P, Kreeger L, Sridhar T, Bursell M, Wright C (2014) Virtual eXtensible Local Area Network (VXLAN): a framework for overlaying virtualized layer 2 networks over layer 3 networks. RFC 7348, RFC Editor,

  38. Marikyan D, Papagiannidis S, Alamanos E (2019) A systematic review of the smart home literature: a user perspective. Technol Forecast Soc Change 138:139–154.

    Article  Google Scholar 

  39. Ongaro D, Ousterhout J (2014) In search of an understandable consensus algorithm. In: Proceedings of the 2014 USENIX Annual Technical Conference, USENIX ATC 2014, Philadelphia, PA, USA, pp 305–319

  40. Plantevin V, Bouzouane A, Gaboury S (2017) The light node communication framework: a new way to communicate inside smart homes. Sensors 17(10):2397–2416.

    Article  Google Scholar 

  41. Plantevin V, Bouzouane A, Bouchard B, Gaboury S (2019) Towards a more reliable and scalable architecture for smart home environments. J Ambient Intell Humaniz Comput 10(7):2645–2656.

    Article  Google Scholar 

  42. Rajkomar A, Dean J, Kohane I (2019) Machine learning in medicine. N Engl J Med 380(14):1347–1358.

    Article  Google Scholar 

  43. Ramasamy Ramamurthy S, Roy N (2018) Recent trends in machine learning for human activity recognition—a survey. Wiley Interdiscipl Rev Data Min Knowl Discov 8:4.

    Article  Google Scholar 

  44. Ritthoo O, Klinkenberg R, Fischer S, Mierswa I, Felske S (2003) Yale: yet another learning environment. Tech. rep., Universität Dortmund, Dortmund, Germany,

  45. Salowey J, Choudhury A, McGrew D (2008) AES galois counter mode (GCM) cipher suites for TLS. RFC 5288, RFC Editor, Accessed 17 Nov 2020

  46. Thullier F, Plantevin V, Bouzouane A, Halle S, Gaboury S (2017) A position-independent method for soil types recognition using inertial data from a wearable device. In: 2017 IEEE SmartWorld, ubiquitous intelligence & computing, advanced & trusted computed, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), IEEE, San Francisco, CA, USA, pp 1–10,

  47. Thullier F, Plantevin V, Bouzouane A, Halle S, Gaboury S (2018) A comparison of inertial data acquisition methods for a position-independent soil types recognition. In: 2018 IEEE SmartWorld, ubiquitous intelligence & computing, advanced & trusted computing, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), IEEE, Guangzhou, China, pp 1052–1056,

  48. Triboan D, Chen L, Chen F, Wang Z (2016) Towards a service-oriented architecture for a mobile assistive system with real-time environmental sensing. Tsinghua Sci Technol 21(6):581–597.

    Article  Google Scholar 

  49. Valiente-Rocha PA, Lozano-Tello A (2010) Ontology-based expert system for home automation controlling. In: International Conference on industrial, engineering and other applications of applied intelligent systems, Springer, Córdoba, Spain 6096:661–670.

  50. Wang J, Chen Y, Hao S, Peng X, Hu L (2019) Deep learning for sensor-based activity recognition: a survey. Pattern Recognit Lett 119:3–11.

    Article  Google Scholar 

  51. Witten IH, Frank E, Hall MA, Pal CJ (2016) Data mining: practical machine learning tools and techniques, 4th edn. Morgan Kaufmann Publishers Inc., Burlington.

    Book  Google Scholar 

  52. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I (2010) Spark: cluster computing with working sets. In: ACM (ed) 2nd USENIX Workshop on hot topics in cloud computing, HotCloud 2010, USENIX Association, Boston, MA, pp 1–10,

  53. Zhang S, Wei Z, Nie J, Huang L, Wang S, Li Z (2017) A review on human activity recognition using vision-based method. J Healthc Eng.

    Article  Google Scholar 

Download references


The authors would like to thank the Canadian Foundation for Innovation (CFI) for providing the laboratory infrastructure and the equipment.

Author information



Corresponding author

Correspondence to Florentin Thullier.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thullier, F., Hallé, S. & Gaboury, S. LE2ML: a microservices-based machine learning workbench as part of an agnostic, reliable and scalable architecture for smart homes. J Ambient Intell Human Comput (2021).

Download citation


  • Machine learning
  • Workbench
  • Architecture
  • Smart home