We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Vehicle recognition algorithm based on Haar-like features and improved Adaboost classifier | SpringerLink

Vehicle recognition algorithm based on Haar-like features and improved Adaboost classifier

Abstract

As the first step of vehicle detection and recognition system, how to quickly and accurately detect the vehicle in a picture is directly related to the subsequent vehicle application research. In order to improve the processing speed of vehicle detection, reduce the false alarm rate of detection, and get better results, the method is applied in real scene, this paper carried out in-depth research on this. Collect traffic and urban road surveillance videos as experimental data, of which 2000 were positive samples and 2000 were negative samples. Firstly, a vehicle image preprocessing is carried out on the collected experimental data, and the image feature is extracted based on gray image and improved AdaBoost algorithm, and then the image enhancement is realized by using multi-scale Retinex. Using this method, we can make the image processing accord with the nonlinear characteristics of the human eye to the brightness response, and avoid the distortion of the image directly processed by Fourier transform. In order to improve AdaBoost classifier, it is necessary to use local binary edge features and train the collected feature samples. In order to highlight the vehicle target and ignore the background, we need to use a selective graying way, which is based on the H component of HSV space. The experimental results show that the accuracy of AdaBoost classifier reaches 85.8%, the recall rate is 80.9%, and the comprehensive performance is very high, which can meet the performance requirements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

No data were used to support this study.

References

  1. Altena RV, Vries GD, Haar CH, Lange WD, Magis-Escurra C, Van D et al (2015) Highly successful treatment outcome of multidrug-resistant tuberculosis in the netherlands, 2000–2009. Int J Tuberculosis Lung Dis off J Int Union against Tuberculosis Lung Dis 19(4):406–412. https://doi.org/10.5588/ijtld.14.0838

    Article  Google Scholar 

  2. Atlas A, Afraites L, Karami, Fahd et al. (2016). Some class of parabolic systems applied to image processing. Discrete and continuous dynamical systems, Series B.

  3. Chatain T, Haar S, Kolák J, Paulevé L, Thakkar A (2020) Concurrency in boolean networks. Nat Comput 19(1):91–109. https://doi.org/10.1007/s11047-019-09748-4

    MathSciNet  Article  Google Scholar 

  4. Cheng W, Wang X, Wan Z, Guo Z (2017) Research and implementation of target tracking algorithm in compression domain on miniaturized dsp platform. Opto-Electron Eng 44(10):972–982

    Google Scholar 

  5. Couprie M, Bezerra FN, Bertrand G (2015) Topological operators for grayscale image processing. J Electron Imaging 10(4):1003–1015. https://doi.org/10.1117/1.1408316

    Article  Google Scholar 

  6. Kameda, Hiroshi, Nomoto, Kohei, Kosuge, & Yoshio, et al. (1997). Target tracking algorithm in radar reference coordinates using full-coupled filters. Electronics & Communications in Japan, Part 1: Communications. https://doi.org/10.1002/(SICI)1520-6424(199707)80:7<90::AID-ECJA10>3.0.CO;2-Y

  7. Kamel IR, Georgiades C, Fishman EK (2017) Incremental value of advanced image processing of multislice computed tomography data in the evaluation of hypervascular liver lesions. J Comput Assist Tomogr 27(4):652–656. https://doi.org/10.1097/00004728-200307000-00038

    Article  Google Scholar 

  8. Li JQ, Zhao RH, Chen JL, Zhao CY, Zhu YP (2016) Target tracking algorithm based on adaptive strong tracking particle filter. IET Sci Meas Technol 10(7):704–710. https://doi.org/10.1049/iet-smt.2016.0044

    Article  Google Scholar 

  9. Li-Ping XU, Jia LI, Fang L (2015) Establishment of model of Adaboost classifier and evaluation of harmful mutations in non-coding regions of liver cancer cells. J Shanghai Jiaotong Univ (chin Ed) 35(6):819–823

    Google Scholar 

  10. Liu C, Chang F, Liu C (2015a) Cascaded split-level colour haar-like features for object detection. Electron Lett 51(25):2106–2107. https://doi.org/10.1049/el.2015.2092

    Article  Google Scholar 

  11. Liu MH, Wang CS, Wang XL (2015b) Mean-shift target tracking algorithm based on adaptive multi-features fusion. Guangdianzi Jiguang/j Optoelectron Laser 26(8):1583–1592

    Google Scholar 

  12. Liu Y, He Y, Wang HP, Dong K (2015c) Augmented target tracking algorithm based on srckf for joint estimation of state and sensor systematic error. J Jilin Univ (eng Technol Ed) 45(1):314–321

    Google Scholar 

  13. Miyanaga K, Seki M, Furusaki S (2015) Analysis of pigment accumulation heterogeneity in plant cell population by image-processing system. Biotechnol Bioeng 67(4):493–497. https://doi.org/10.1002/(SICI)1097-0290(20000220)67:4%3c493::AID-BIT13%3e3.0.CO;2-U

    Article  Google Scholar 

  14. Pieniazek F, Sancho A, Messina V (2016) Texture and color analysis of lentils and rice for instant meal using image processing techniques. J Food Process Preservation, 40(5), n/a-n/a. https://doi.org/10.1111/jfpp.12677

  15. Schwegmann CP, Kleynhans W, Salmon BP (2017) Synthetic aperture radar ship detection using haar-like features. IEEE Geosci Remote Sens Lett 14(2):154–158. https://doi.org/10.1109/LGRS.2016.2631638

    Article  Google Scholar 

  16. Szmaja W (2015) Improvements in domain study with the conventional bitter method by digital image processing system. Physica Status Solidi (a), 194(1), 315–330. https://doi.org/10.1002/1521-396X(200211)194:1<315::AID-PSSA315>3.0.CO;2-X

  17. Tan T, Mordang JJ, Zelst JV, Grivegnée A, Gubern-Mérida A, Melendez J et al (2015) Computer-aided detection of breast cancers using haar-like features in automated 3d breast ultrasound. Med Phys 42(4):1498–1504. https://doi.org/10.1118/1.4914162

    Article  Google Scholar 

  18. Wigianto R, Ichikawa T, Kanitani H, Horiuchi M, Matsumoto N, Ishizuka H (2015) Three-dimensional examination of bone structure around hydroxyapatite implants using digital image processing. J Biomed Mater Res 34(2):177–182. https://doi.org/10.1002/(SICI)1097-4636(199702)34:2%3c177::AID-JBM6%3e3.0.CO;2-N

    Article  Google Scholar 

  19. Wood HJ, Albrecht R (2015) Digital image processing of Ap-star coude Zeeman plates. Asia Euro J 13(2):163–174

    Article  Google Scholar 

  20. Yang H., Li W. (2015). Performance measurement of photoelectric detection and target tracking algorithm. Int J Smart Sens Intell Syst 8(3):1554–1575. https://doi.org/10.21307/ijssis-2017-819

  21. Zhang M, Wang J, Pechauer AD, Hwang TS, Gao SS, Liu L et al (2015) Advanced image processing for optical coherence tomographic angiography of macular diseases. Biomed Opt Express 6(12):4661–4675. https://doi.org/10.1364/BOE.6.004661

    Article  Google Scholar 

  22. Zhengping Wu, Yang J, Liu H, Zhang Q (2016) A real-time object tracking via l2-rls and compressed haar-like features matching. Multimedia Tools Appl. https://doi.org/10.1007/s11042-016-3356-8

    Article  Google Scholar 

  23. Zhu WY (2017) Video target tracking algorithm with combining robust estimation and meanshift. J Shenyang Univ Technol 39(2):177–182

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Education Department of Liaoning Province, General project (No.L2014085), and the Major Technology Platforms of Liaoning, China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jinsong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, J. & An, Z. Vehicle recognition algorithm based on Haar-like features and improved Adaboost classifier. J Ambient Intell Human Comput (2021). https://doi.org/10.1007/s12652-021-03332-4

Download citation

Keywords

  • Haar features
  • Adaboost classifier
  • Vehicle recognition algorithm
  • Target tracking algorithm
  • Image processing