Alhasan K, Aliyu S, Chen L, Chen F (2019) Ica-based eeg feature analysis and classification of learning styles. 2019 IEEE international conference on dependable. autonomic and secure computing, international conference on pervasive intelligence and computing, international conference on cloud and big data computing, international conference on cyber science and technology congress (DASC/PiCom/CBDCom/CyberSciTech), IEEE, pp 271–276
Aljanaki A, Wiering F, Veltkamp RC (2016) Studying emotion induced by music through a crowdsourcing game. Inf Process Manag 52(1):115–128
Article
Google Scholar
Bänziger T, Mortillaro M, Scherer KR (2012) Introducing the Geneva multimodal expression corpus for experimental research on emotion perception. Emotion 12:1161–1179
Article
Google Scholar
Banziger T, Patel S, Scherer K (2014) The role of perceived voice and speech characteristics in vocal emotion communication. J Nonverbal Behav 38:31–52
Article
Google Scholar
Burkhardt F, Paeschke A, Rolfes M, Sendlmeier WF, Weiss B (2005) A database of German emotional speech. In: Ninth European conference on speech communication and technology
Davis MH (2018) Empathy: a social psychological approach. Routledge
Book
Google Scholar
Dempster A, Laid N, Durbin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc 39:1–38
MathSciNet
Google Scholar
Desplanques B, Demuynck K (2018) Cross-lingual speech emotion recognition through factor analysis. In: Interspeech2018, ISCA, pp 3648–3652
Dissanayake V, Zhang H, Billinghurst M, Nanayakkara S (2020) Speech emotion recognition—in the wild-using an autoencoder. Proc Interspeech 2020:526–530
Article
Google Scholar
Ekman P (2016) What scientists who study emotion agree about. Perspect Psychol Sci 11(1):31–34
Article
Google Scholar
Eyben F, Scherer KR, Schuller BW, Sundberg J, André E, Busso C, Devillers LY, Epps J, Laukka P, Narayanan SS et al (2016) The Geneva minimalistic acoustic parameter set (GEMAPS) for voice research and affective computing. IEEE Trans Affect Comput 7(2):190–202
Article
Google Scholar
Gangamohan P, Kadiri SR, Yegnanarayana B (2016) Analysis of emotional speech–a review. In: Toward robotic socially believable behaving systems-Volume I, Springer, pp 205–238
Garofolo JS (1993) Timit acoustic phonetic continuous speech corpus. Linguistic Data Consortium
Haq S, Jackson P (2009) Speaker-dependent audio-visual emotion recognition. In: International conference on auditory-visual speech processing, pp 53–58
Haque A, Rao KS (2017) Modification of energy spectra, epoch parameters and prosody for emotion conversion in speech. Int J Speech Technol 20(1):15–25
Article
Google Scholar
Hasan T, Hansen JH (2011) A study on universal background model training in speaker verification. IEEE Trans Audio Speech Lang Process 19(7):1890–1899
Article
Google Scholar
Hofmann M (2006) Support vector machines-kernels and the kernel trick. Notes 26:3
Google Scholar
Hsu CW, Lin CJ (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 13(2):415–425
Article
Google Scholar
Huang X, Maier A, Hornegger J, Suykens JA (2017) Indefinite kernels in least squares support vector machines and principal component analysis. Appl Comput Harmon Anal 43(1):162–172
MathSciNet
Article
Google Scholar
Huang Y, Tian K, Wu A, Zhang G (2019) Feature fusion methods research based on deep belief networks for speech emotion recognition under noise condition. J Ambient Intell Human Comput 10(5):1787–1798
Article
Google Scholar
Issa D, Demirci MF, Yazici A (2020) Speech emotion recognition with deep convolutional neural networks. Biomed Signal Process Control 59:101894
Article
Google Scholar
Keltner D, Cordaro DT (2017) Understanding multimodal emotional expressions: recent advances in basic emotion theory. Sci Facial Exp 20:57–76
Google Scholar
Kerkeni L, Serrestou Y, Mbarki M, Raoof K, Mahjoub MA, Cleder C (2019) Automatic speech emotion recognition using machine learning. Social media and machine learning. IntechOpen
Google Scholar
Koolagudi SG, Rao KS (2012) Emotion recognition from speech: a review. Int J Speech Technol 15(2):99–117
Article
Google Scholar
Kragel PA, LaBar KS (2016) Decoding the nature of emotion in the brain. Trends Cogn Sci 20(6):444–455
Article
Google Scholar
Latif S, Rana R, Younis S, Qadir J, Epps J (2018) Transfer learning for improving speech emotion classification accuracy. In: Interspeech, pp 257–261
Lee L, Rose RC (1996) Speaker normalization using efficient frequency warping procedures. In: 1996 IEEE international conference on acoustics, speech, and signal processing conference proceedings, IEEE, vol 1, pp 353–356
Lin HCK, Hsieh MC, Loh LC, Wang CH (2012) An emotion recognition mechanism based on the combination of mutual information and semantic clues. J Ambient Intell Human Comput 3(1):19–29
Article
Google Scholar
Lopatovska I, Arapakis I (2011) Theories, methods and current research on emotions in library and information science, information retrieval and human-computer interaction. Inf Process Manag 47(4):575–592
Article
Google Scholar
Lozano-Monasor E, López MT, Vigo-Bustos F, Fernández-Caballero A (2017) Facial expression recognition in ageing adults: from lab to ambient assisted living. J Ambient Intell Human Comput 8(4):567–578
Article
Google Scholar
McLaughlin J, Reynolds DA, Gleason T (1999) A study of computation speed-ups of the GMM-UBM speaker recognition system. In: Sixth European conference on speech communication and technology
Meyer D, Wien FT (2015) Support vector machines: the interface to libsvm in package e1071. Tech. rep, FH Technikum Wien, Austria
Pols LC, et al. (1977) Spectral analysis and identification of dutch vowels in monosyllabic words
Rabiner L (1993) Fundamentals of speech recognition. Fundamentals of speech recognition
Ralambondrainy H (1995) A conceptual version of the k-means algorithm. Pattern Recogn Lett 16(11):1147–1157
Article
Google Scholar
Rong J, Li G, Chen YPP (2009) Acoustic feature selection for automatic emotion recognition from speech. Inf Process Manag 45(3):315–328
Article
Google Scholar
Schmitt M, Janott C, Pandit V, Qian K, Heiser C, Hemmert W, Schuller B (2016) A bag-of-audio-words approach for snore sounds’ excitation localisation. Speech Communication, 12. ITG Symposium, VDE, pp 1–5
Schuller B, Vlasenko B, Eyben F, Wollmer M, Stuhlsatz A, Wendemuth A, Rigoll G (2010) Cross-corpus acoustic emotion recognition: variances and strategies. IEEE Trans Affect Comput 1(2):119–131
Article
Google Scholar
Schuller B, Steidl S, Batliner A, Vinciarelli A, Scherer K, Ringeval F, Chetouani M, Weninger F, Eyben F, Marchi E et al (2013) The interspeech 2013 computational paralinguistics challenge: social signals, conflict, emotion, autism. In: Interspeech, pp 122–126
Schuller B, Steidl S, Batliner A, Nöth E, Vinciarelli A, Burkhardt F, van Son R, Weninger F, Eyben F, Bocklet T, Mohammadi G, Weiss B (2015) A survey on perceived speaker traits: personality, likability, pathology, and the first challenge. Comput Speech Lang 29(1):100–131
Article
Google Scholar
Schuller BW, Steidl S, Batliner A, Marschik PB, Baumeister H, Dong F, Hantke S, Pokorny FB, Rathner EM, Bartl-Pokorny KD et al (2018) The interspeech 2018 computational paralinguistics challenge: atypical and self-assessed affect, crying and heart beats. In: Interspeech, pp 122–126
Schuller B, Weninger F, Zhang Y, Ringeval F, Batliner A, Steidl S, Eyben F, Marchi E, Vinciarelli A, Scherer K et al (2019) Affective and behavioural computing: lessons learnt from the first computational paralinguistics challenge. Comput Speech Lang 53:156–180
Article
Google Scholar
Sobin C, Alpert M (1999) Emotion in speech: the acoustic attributes of fear, anger, sadness, and joy. J Psycholinguist Res 28(4):347–365
Article
Google Scholar
Sohn J, Kim NS, Sung W (1999) A statistical model-based voice activity detection. IEEE Signal Process Lett 6(1):1–3
Article
Google Scholar
Swain M, Routray A, Kabisatpathy P (2018a) Databases, features and classifiers for speech emotion recognition: a review. Int J Speech Technol 21(1):93–120
Article
Google Scholar
Swain M, Routray A, Kabisatpathy P (2018b) Databases, features and classifiers for speech emotion recognition: a review. Int J Speech Technol 21(1):93–120
Article
Google Scholar
Tzinis E, Paraskevopoulos G, Baziotis C, Potamianos A (2018) Integrating recurrence dynamics for speech emotion recognition. In: Interspeech, pp 927–931
Vafeiadis A, Kalatzis D, Votis K, Giakoumis D, Tzovaras D, Chen L, Hamzaoui R (2017) Acoustic scene classification: from a hybrid classifier to deep learning
Vafeiadis A, Votis K, Giakoumis D, Tzovaras D, Chen L, Hamzaoui R (2020) Audio content analysis for unobtrusive event detection in smart homes. Eng Appl Artif Intell 89:103226
Article
Google Scholar
Vapnik V (1995) The nature of statistical learning theory, vol 2. Spring, New York
Book
Google Scholar
Verma GK, Tiwary US (2017) Affect representation and recognition in 3d continuous valence-arousal-dominance space. Multimed Tools Appl 76(2):2159–2183
Article
Google Scholar
You CH, Li H, Lee KA (2015) Relevance factor of maximum a posteriori adaptation for GMM-NAP-SVM in speaker and language recognition. Comput Speech Lang 30(1):116–134
Article
Google Scholar
Zhang J, Zhou Y, Liu Y (2020) EEG-based emotion recognition using an improved radial basis function neural network. J Ambient Intell Human Comput 20:1–12
Google Scholar