Skip to main content

Advertisement

Log in

Optimized control for medical image segmentation: improved multi-agent systems agreements using Particle Swarm Optimization

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

The optimal segmentation of medical images remains important for promoting the intensive use of automatic approaches in decision making, disease diagnosis, and facilitating the sustainable development of computer vision studies. Generally, recent methods tend to minimize human–machine interaction by using multi-agent systems (MAS) and optimize the segmentation systems control. Some of the existing segmentation methods consider MAS qualifications and advantages but underline a lack of global optimization goals, and therefore they provide unsatisfactory results taking into account the need for precision in medical imaging. Our work coupled an improved MAS control protocol for medical image segmentation with the particle swarm optimization algorithm to strengthen the system for better result performance. The proposed method could relieve agents’ conflicts during the medical image segmentation for optimum control, better decision-making, and higher processing quality under the critical medical restrictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel-Basset M et al (2017) Feature and intensity based medical image registration using particle swarm optimization. J Med Syst 41(12):197

    Article  Google Scholar 

  • Ahmed M et al (2002) A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 21(3):193–199

    Article  Google Scholar 

  • Akay B, Karaboga D (2015) A survey on the applications of artificial bee colony in signal, image and video processing. SIViP 9(4):967–990

    Article  Google Scholar 

  • Allioui H et al (2016) A cooperative approach for 3D image segmentation. Int Conf Eng MIS. https://doi.org/10.1109/ICEMIS.2016.7745378

    Article  Google Scholar 

  • Allioui H et al (2019a) A robust multi-agent negotiation for advanced image segmentation: design and implementation. Intell Artif 22(64):102–122

    Google Scholar 

  • Allioui H, Sadgal M, Elfazziki A (2019b) Deep MRI segmentation: a convolutional method applied to Alzheimer disease detection. Int J Adv Comput Sci Appl 10(11). https://doi.org/10.14569/IJACSA.2019.0101151

  • Allioui H, Sadgal M, Elfazziki A (2020) Utilization of a convolutional method for Alzheimer disease diagnosis. Mach Vision Appl 31(4). https://doi.org/10.1007/s00138-020-01074-5

  • AlRashidi MR, El-Hawary ME (2009) A survey of particle swarm optimization applications in electric power systems. IEEE Trans Evol Comput 13:913–918

    Article  Google Scholar 

  • Beucher S, Meyer F (1993) The morphological approach to segmentation: the watershed transforms. Math Morphol Image Process 12:433–481

    Google Scholar 

  • Bhanu B, Peng J (2000) Adaptive integrated image segmentation and object recognition. IEEE Trans Syst Man Cybern Part C 30:427–441

    Article  Google Scholar 

  • Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  Google Scholar 

  • Campos M, Krohling RA (2016) Entropy-based bare bones particle swarm for dynamic constrained optimization. Knowl Based Syst 97:203–223

    Article  Google Scholar 

  • Chitsaz M, Seng W (2013) Medical image segmentation using a multi-agent system approach. Int Arab J Inf Technol 10(33):222–229. https://www.ccis2k.org/iajit/PDF/vol.10,no.3/3-2999.pdf

    Google Scholar 

  • Clerc M, Kennedy J (2002) The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6:58–73

    Article  Google Scholar 

  • Conway BA, Pontani M (2010) Particle swarm optimization applied to space trajectories. J Guid Control Dyn 33(5):1429–1441

    Article  Google Scholar 

  • Couzin ID et al (2005) Effective leadership and decision making in animal groups on the move. Nature 433:513–516

    Article  Google Scholar 

  • Esmin AA, Coelho RA, Matwin S (2015) A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data. Artif Intell Rev 44:23–45

    Article  Google Scholar 

  • Feber J (1995) Les systemes multi-agents. Vers une intelligence collective. InterEditions, Paris

    Google Scholar 

  • Francis SLX, Anavatti SG, Garratt M (2013) Real time cooperative path planning for multi-autonomous vehicles. In: Proceedings of the IEEE international conference on advances in computing, communications and informatics, pp 1053–1057

  • Gao H, Xu W, Sun J, Tang Y (2010) Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm. IEEE Trans Instrum Meas 59:934–946

    Article  Google Scholar 

  • Gao Y, Du W, Yan G (2015) Selectively-informed particle swarm optimization. Sci Rep 5(1):9295. https://doi.org/10.1038/srep09295

    Article  Google Scholar 

  • Garcia-Lamont F et al (2018) Segmentation of images by color features: a survey. Neurocomputing 292:1–27

    Article  Google Scholar 

  • Grady L, Funka-Lea G (2004) Multi-label image segmentation for medical applications based on graph-theoretic electrical potentials. In: Sonka M, Kakadiaris IA, Kybic J (eds) Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis. MMBIA 2004, CVAMIA 2004. Lecture Notes in Computer Science, vol 3117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27816-0_20

  • Gronemeyer M, Bartels M, Werner H, Horn J (2017) Using particle swarm optimization for source seeking in multi-agent systems. IFAC-PapersOnLine 50(1):11427–11433

    Article  Google Scholar 

  • Guo Y et al (2018) A review of semantic segmentation using deep neural networks. Int J Multimedia Inf Retr 7(2):87–93

    Article  Google Scholar 

  • Hanbury A, Taha A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Medical Imaging 15:29. https://doi.org/10.1186/s12880-015-0068-x

    Article  Google Scholar 

  • Hansen FR, Elliott H (1982) Image segmentation using simple Markov field models. Comput Graph Image Process 20(2):101–132

    Article  Google Scholar 

  • Higgins WE, Ojard E (1993) Interactive morphological watershed analysis for 3D medical images. Comput Med Imaging Graph 17(4):387–395

    Article  Google Scholar 

  • Hofmann P et al (2015) Towards a framework for agent-based image analysis of remote-sensing data. Int J Image Data Fusion 6(2):115–137

    Article  Google Scholar 

  • Hoover A, Kouznetsova V, Goldbaum M (1998) Locating blood vessels in retinal images by piece-wise threshold probing of a matched filter response. Proc AMIA Symp 1998:931–935

    Google Scholar 

  • Hu A, Grossberg B, Mageras C (2009) Survey of recent volumetric medical image segmentation techniques. Biomed Eng. https://doi.org/10.5772/7865

    Article  Google Scholar 

  • Idris L et al (2015) A combined negative selection algorithm–particle swarm optimization for an email spam detection system. Eng Appl Artif Intell 39:33–44

    Article  Google Scholar 

  • Johson MA et al (2016) The analytical study of Particle swarm optimization and multiple agent path planner approaches for extraterrestrial surface searches. Adv Astronaut Sci 158:3699–3718

    Google Scholar 

  • Juang CF et al (2010) Hierarchical cluster-based multispecies particle-swarm optimization for fuzzy-system optimization. IEEE Trans Fuzzy Syst 18:14–26

    Article  Google Scholar 

  • Karaboga D (2005) An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report-TR06, Department of Computer Engineering, Engineering Faculty, Erciyes University. https://lia.disi.unibo.it/Courses/SistInt/articoli/bee-colony1.pdf

  • Kennedy J, Eberhart R (1995a) Particle swarm optimization. IEEE Neural Netw Proc 4:1942–1948

    Google Scholar 

  • Kennedy J, Eberhart R (1995b) The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6:58–73

    Google Scholar 

  • Khan MW et al (2014) A survey: image segmentation techniques. Int J Future Comput Commun 3(2):89–93

    Article  Google Scholar 

  • Kulkarni RV, Venayagamoorthy GK (2011) Particle swarm optimization in wireless-sensor networks: a brief survey. IEEE Trans Syst Man Cybern Part C (Appl Rev) 41:262–267

    Article  Google Scholar 

  • Li K et al (2016) The improved grey model based on particle swarm optimization algorithm for time series prediction. Eng Appl Artif Intell 55:285–291

    Article  Google Scholar 

  • Lin W et al (2016) Mining high-utility itemsets based on particle swarm optimization. Eng Appl Artif Intell 55:320–330

    Article  Google Scholar 

  • Liu Z, Mao C, Luo J, Zhang Y, Philip Chen CL (2014) A three-domain fuzzy wavelet network filter using fuzzy PSO for robotic assisted minimally invasive surgery. Knowl Based Syst 66:13–27

    Article  Google Scholar 

  • Machairas V, Baldeweck T, Walter T, Decencière E (2016) New general features based on superpixels for image segmentation learning. In: IEEE 13th international symposium on biomedical imaging (ISBI), Prague 2016, pp 1409–1413. https://doi.org/10.1109/ISBI.2016.7493531

  • Madabhushi A, Metaxas DN (2003) Combining low-, high-level, and empirical domain knowledge for automated segmentation of ultrasonic breast lesions. IEEE Trans Med Imaging 22(2):155–169

    Article  Google Scholar 

  • Mandal D, Chatterjee A, Maitra M (2014) Robust medical image segmentation using particle swarm optimization aided level set based global fitting energy active contour approach. Eng Appl Artif Intell 35:199–214

    Article  Google Scholar 

  • Mazouzi S et al (2008) An Agent-based Approach for Range Image Segmentation. In: Jamali N, Scerri P, Sugawara T (eds) Massively multi-agent technology, vol 5043. Springer, New York, pp 146–161

    Chapter  Google Scholar 

  • Milletari F, Navab N, Ahmadi S (2016) V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV). Stanford, CA, pp 565–571. https://doi.org/10.1109/3DV.2016.79

  • Nagy M et al (2010) Hierarchical group dynamics in pigeon flocks. Nature 464:890–893

    Article  Google Scholar 

  • Pal NR, Pal SK (1993) Review on image segmentation techniques. Pattern Recogn 26(9):1277–1294

    Article  Google Scholar 

  • Pham DL et al (2000) A survey of current methods in medical image segmentation. Annu Rev Biomed Eng 2:315–338

    Article  Google Scholar 

  • Pratondo A, Ong SH, Chui CK (2014) Region growing for medical image segmentation using a modified multiple-seed approach on a multi-core CPU computer. In: Goh J (ed) The 15th International Conference on Biomedical Engineering. IFMBE Proceedings, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-319-02913-9_29

    Chapter  Google Scholar 

  • Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Lecture Notes in Computer Science, vol 9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  • Salehi S, Selamat A, Reza Mashinchi M, Fujita H (2015) The synergistic combination of particle swarm optimization and fuzzy sets to design granular classifier. Knowl Based Syst 76:200–218

    Article  Google Scholar 

  • Serrà J, Arcos JL (2016) Particle swarm optimization for time series motif discovery. Knowl Based Syst 92:127–137

    Article  Google Scholar 

  • Shukla UP, Nanda SJ (2016) Parallel social spider clustering algorithm for high dimensional datasets. Eng Appl Artif Intell 56:75–90

    Article  Google Scholar 

  • Singh V, Misra AK (2017) Detection of plant leaf diseases using image segmentation and soft computing techniques. Inf Process Agric 4(1):41–49

    Google Scholar 

  • Skaane P et al (2013) Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology 267(1):47–56

    Article  Google Scholar 

  • Soesanti I, Syahputra R (2016) Baltik production process optimization using particle swarm optimization method. J Theor Appl Inf Technol 86(2):271–278

    Google Scholar 

  • SOFTNETA (2020) Medical Imaging and Communication Solutions. https://demo.softneta.com/md5/search.html

  • Sreeji C, Vineetha GR, Amina Beevi A, Nasseena N (2013) Survey on different methods of image segmentation. Int J Sci Eng Res 4(4):970–973

    Google Scholar 

  • Szegedy C et al (2015) Going deeper with convolutions. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), Boston, MA, pp 1–9. https://doi.org/10.1109/CVPR.2015.7298594

  • Valle YD et al (2008) Particle swarm optimization: basic concepts, variants, and applications in power systems. IEEE Trans Evol Comput 12:171–195

    Article  Google Scholar 

  • Villarraga J et al (2017) Agent-based modeling and simulation for an order-to-cash process using NetLogo. https://reports-archive.adm.cs.cmu.edu/anon/isr2017/CMU-ISR-17-113.pdf

  • Wang H, Yan X (2015) Optimizing the echo state network with a binary particle swarm optimization algorithm. Knowl Based Syst 86:182–193

    Article  Google Scholar 

  • Wang L, Geng H, Liu P, Lu K, Kolodziej J, Ranjan R, Zomaya AY (2015) Particle swarm optimization based dictionary learning for remote sensing big data. Knowl Based Syst 79:43–50

    Article  Google Scholar 

  • Wang S, Phillips P, Yang J, Sun P, Zhang Y (2016) Magnetic resonance brain classification by a novel binary particle swarm optimization with mutation and time-varying acceleration coefficients. Biomed Eng Biomed Technik 61:431–441

    Article  Google Scholar 

  • Wang D, Wang H, Liu L (2016) Unknown environment exploration of multirobot system with the FORDPSO. Swarm Evol Comput 26:157–174

    Article  Google Scholar 

  • Yang J et al (2017) Caspersen, Region merging using local spectral angle thresholds: A more accurate method for hybrid segmentation of remote sensing images. Remote Sens Environ 190:137–148

    Article  Google Scholar 

  • Yang ZX, Tang LL, Zhang K, Wong PK (2018) Multi-view CNN feature aggregation with ELM auto-encoder for 3D shape recognition. Cogn Comput 10(6):908–921

    Article  Google Scholar 

  • Yea X et al (2019) Multi-agent hybrid particle swarm optimization (MAHPSO) for wastewater. J Environ Manage 234:525–536

    Article  Google Scholar 

  • Zadeh SM, Powers DMW, Sammut K, Yazdani A (2016) Toward efficient task assignment and motion planning for large scale underwater mission. Robot. arXiv:1604.04854

  • Zhang X, Li X, Feng Y (2015) A medical image segmentation algorithm based on bi-directional region growing. Optik 126(20):2398–2404

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanane Allioui.

Ethics declarations

Conflict of interest

Authors declare that they do not have any potential conflicts of interest.

Availability of data and material

SOFTNETA: Medical Imaging and Communication Solutions, https://demo.softneta.com/md5/search.html.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allioui, H., Sadgal, M. & Elfazziki, A. Optimized control for medical image segmentation: improved multi-agent systems agreements using Particle Swarm Optimization. J Ambient Intell Human Comput 12, 8867–8885 (2021). https://doi.org/10.1007/s12652-020-02682-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-02682-9

Keywords

Navigation