Skip to main content
Log in

Classification of retinal fundus image using MS-DRLBP features and CNN-RBF classifier

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

The most common retinal diseases that are to be diagnosed are Diabetic Retinopathy (DR), Age-related Macular Degeneration (AMD) and Choroidal Neovascularization (CNV). For the people above 60 years of age, detection of these retinal diseases is an important task for treatment that reduces the risk of vision loss. Retinal fundus images play a significant role in the detection of DR, AMD and CNV disease diagnosis and treatment. The existing techniques for the detection of DR, AMD and CNV have not fulfilled with the classification accuracy of the retinal diseases effectively. This research work proposes an efficient classification framework for retinal fundus image recognition to overcome these drawbacks. Initially, the input image from the publicly available STARE database is preprocessed with the following three steps (a) Specular reflection removal and smoothing, (b) contrast enhancement and (c) retinal region expansion. With the preprocessed image, the features are extracted using Multi-Scale Discriminative Robust Local Binary Pattern (MS-DRLBP), based on RGB component selection, Gradient operation, and LBP descriptor. Finally, classification was done using hybrid Convolution Neural Network (CNN) and Radial Basis Function (RBF) model (CNN-RBF) which classifies the retinal fundus images into four classes such as DR, AMD, CNV and Normal (NR). Experimental results of the proposed method gives an accuracy of 97.22% compared with the existing other methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Department of Economic and Social Affairs (2017) World population prospects the 2017 revision key findings and advance tables, United Nations, New York

  • Prince MJ et al (2015) The burden of disease in older people and implications for health policy and practice. Lancet 385(9967):549–562

    Article  Google Scholar 

  • A Damayanti (2017) Fuzzy learning vector quantization, neural network and fuzzy systems for classification fundus eye images with wavelet transformation. In: 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), pp 331–336. IEEE

  • Y Yan, D Wen, M Ali Akber Dewan, W-B Huang (2017) Classification of artery and vein in retinal fundus images based on the context-dependent features. In: International Conference on Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management, pp 198–213. Springer, Cham

  • Z Qiao, Q Zhang, Y Dong, J-J Yang (2017) Application of SVM based on genetic algorithm in classification of cataract fundus images. In: 2017 IEEE International Conference on Imaging Systems and Techniques (IST), pp 1–5. IEEE

  • Geetharamani R, Balasubramanian L (2015) Automatic segmentation of blood vessels from retinal fundus images through image processing and data mining techniques. Sadhana 40(6):1715–1736

    Article  MathSciNet  Google Scholar 

  • Dong Y, Wang Q, Zhang Q, Yang J (2016) Classification of cataract fundus image based on retinal vascular information. International Conference on Smart Health. Springer, Cham, pp 166–173

    Google Scholar 

  • Morales S, Engan K, Naranjo V, Colomer A (2017) Retinal disease screening through local binary patterns. IEEE J Biomed Health Inform 21(1):184–192. https://doi.org/10.1109/JBHI.2015.2490798

    Article  Google Scholar 

  • World Health Organization (WHO) (2013) Universal eye health: a global action plan 2014–2019

  • World Health Organization (WHO) (2010) Action plan for the prevention of avoidable blindness and visual impairment 2009–2013

  • J Li, Q Hu, A Imran, L Zhang, J-J Yang, Q Wang (2018) Vessel recognition of retinal fundus images based on fully convolutional network. In: 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC) 2, pp 413–418. IEEE

  • S Roychowdhury (2016) Classification of large-scale fundus image data sets: a cloud-computing framework. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 3256–3259. IEEE

  • Dash J, Bhoi N (2018) An unsupervised approach for extraction of blood vessels from fundus images. J Digit Imaging 31:857–868. https://doi.org/10.1007/s10278-018-0059-x

    Article  Google Scholar 

  • Ritika, Detection of microaneurysms in retinal images through local binary patterns, Master Thesis, Department of Physics, National Institute of Technology, Kurukshetra

  • https://wwwn.cdc.gov/nchs/data/nhanes3/manuals/fundus.pdf

  • Marín D, Aquino A, Gegundez-Arias ME, Bravo JM (2011) Anew supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imaging 30:146–158. https://doi.org/10.1109/TMI.2010.2064333

    Article  Google Scholar 

  • M Mateen, J Wen, N Nasrullah, S Sun, S Hayat: Exudate detection for diabetic retinopathy using pretrained convolutional neural networks. 2020, Article ID 5801870, 11. https://doi.org/https://doi.org/10.1155/2020/5801870

  • Vijaya Kumar HS, Jayaram MA, Asha GK, Bharathi PT (2016) A comparative study on filters with special reference to retinal images. Int J Comput Appl 138(5):36–41

    Google Scholar 

  • Sonali et al. (2018) An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE. Opt Laser Technol. doi: 10.1016/j.optlastec.2018.06.061

  • Elseid AAG, Elmanna ME, Hamza AO (2018) Evaluation of spatial filtering techniques in retinal fundus images. Am J Artif Intell 2(2):16–21. https://doi.org/10.11648/j.ajai.20180202.11

    Article  Google Scholar 

  • Zana F, Klein J (2001) Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans Image Process 10(7):1010–1019. https://doi.org/10.1109/83.931095

    Article  MATH  Google Scholar 

  • C. Lu et al. (2016) Vessel enhancement of low quality fundus image using mathematical morphology and combination of Gabor and matched filter. 2016 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), Jeju, 2016, pp 168–173. doi: https://doi.org/10.1109/ICWAPR.2016.7731638.

  • Cigdem S, Carl JN, Boguslaw O (2019) The multiscale bowler-hat transform for blood vessel enhancement in retinal images. Pattern Recogn 88:739–750. https://doi.org/10.1016/j.patcog.2018.10.011

    Article  Google Scholar 

  • Mukhopadhyay S, Chanda B (2003) Multiscale morphological segmentation of gray-scale images. IEEE Trans Image Process 12(5):533–549. https://doi.org/10.1109/TIP.2003.810757

    Article  Google Scholar 

  • Hassan G et al (2015) Retinal blood vessel segmentation approach based on mathematical morphology. Procedia Comput Sci 65:612–622

    Article  Google Scholar 

  • Ojala T., Pietikäinen M., Mäenpää T. (2001) A generalized local binary pattern operator for multiresolution gray scale and rotation invariant texture classification. In: Singh S, Murshed N, Kropatsch W (eds) Advances in pattern recognition—ICAPR 2001. ICAPR 2001. Lecture Notes in Computer Science, vol 2013. Springer, Berlin, Heidelberg. https://doi.org/https://doi.org/10.1007/3-540-44732-6_41

  • Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987. https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  • Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041. https://doi.org/10.1109/TPAMI.2006.244

    Article  MATH  Google Scholar 

  • Heikkil M, Pietikinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recog 42(3):425–436

    Article  Google Scholar 

  • Yang Z., Ai H. (2007) Demographic classification with local binary patterns. In: Lee SW., Li S.Z. (eds) Advances in biometrics. ICB 2007. Lecture Notes in Computer Science, vol 4642. Springer, Berlin, Heidelberg. https://doi.org/https://doi.org/10.1007/978-3-540-74549-5_49

  • LP Kotu, K Engan, T Eftestøl, L Woie, S Ørn, AK Katsaggelos, Local binary patterns used on cardiac MRI to classify high and low risk patient groups. In: 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), Bucharest, 2012, pp 2586-2590

  • K Oppedal, K Engan, D Aarsland, M Beyer, OB Tysnes, T Eftestøl (2012) Using local binary pattern to classify dementia in MRI. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), Barcelona, 2012, pp 594–597. doi: 10.1109/ISBI.2012.6235618

  • Nanni L, Lumini A, Brahnam S (2010) Local binary patterns variants as texture descriptors formedical image analysis. Artif Intell Med 49(2):117–125

    Article  Google Scholar 

  • SM Zabihi, M Delgir, HR Pourreza (2010) Retinal vessel segmentation using color image morphology and local binary patterns. In: 2010 6th Iranian Conference on Machine Vision and Image Processing, Isfahan, 2010, pp 1–5. doi: https://doi.org/10.1109/IranianMVIP.2010.5941129.

  • Dhanushkodi SSR, Vasuki M (2013) Diagnosis system for diabetic retinopathy to prevent vision loss. Appl Med Inform 33:1–11

    Google Scholar 

  • Mookiah M et al (2013) Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: a hybrid feature extraction approach. Knowl Based Syst 39:9–22

    Article  Google Scholar 

  • Krishnan MMR, Laude A (2013) An integrated diabetic retinopathy index for the diagnosis of retinopathy using digital fundus image features. J Med Imag Health Informat 3(2):306–313

    Article  Google Scholar 

  • M Garnier, T Hurtut, HB Tahar, F Cheriet: Automatic multiresolution age-related macular degeneration detection from fundus images. In: Proc. SPIE 9035, Medical Imaging 2014: Computer-Aided Diagnosis, 903532 (18 March 2014). https://doi.org/https://doi.org/10.1117/12.2043099

  • Tan JH, Fujita H, Sivaprasad S et al (2017) Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Inf Sci 420:66–76

    Article  Google Scholar 

  • M Mateen, J Wen, N Nasrullah, S Sun, S Hayat: Exudate detection for diabetic retinopathy using pretrained convolutional neural networks. Volume 2020, Article ID 5801870, 11 pages. https://doi.org/https://doi.org/10.1155/2020/5801870

  • García M, Sánchez CI, López MI, Abásolo D, Hornero R (2009) Neural network based detection of hard exudates in retinal images. Comput Methods Programs Biomed 93(1):9–19

    Article  Google Scholar 

  • M Garcia, MI Lopez, R Hornero, A Diez, J Poza (2009) Utility of a radial basis function classifier in the detection of red lession in retinal images. In: O Dossel, WC Schlegel (eds), IFMBE Proceedings 25/11, pp 21–24

  • Kamble VV, Kokate RD (2020) Automated diabetic retinopathy detection using radial basis function. Procedia Comput Sci 167:799–808

    Article  Google Scholar 

  • Cheruku R, Edla D, Kuppili V (2017) Diabetes classification using radial basis function network by combining cluster validity index and BAT optimization with novel fitness function. Int J Comput Intell Syst 10:247. https://doi.org/10.2991/ijcis.2017.10.1.17

    Article  Google Scholar 

  • Vijayamadheswaran R, Arthanari M, Sivakumar M (2011) Detection of diabetic retinopathy using radial basis function. IJITCE 1(1):40–47

    Google Scholar 

  • J Anitha, C Kezi Selva Vijila, D Jude Hemanth (2010) Automated radial basis function neural network based image classification system for diabetic retinopathy detection in retinal images. In: K Jusoff, Y Xie (eds) Second International Conference on Digital Image Processing, Proc of SPIE Vol 7546

  • M Chetoui, MA Akhloufi, M Kardouchi (2018) Diabetic retinopathy detection using machine learning and texture features. In: 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), Quebec City, QC, pp 1–4. doi: https://doi.org/10.1109/CCECE.2018.8447809.

  • Khandhadia S, Cipriani V, Yates J, Lotery AJ (2012) Age-related macular degeneration and the complement system. Immunobiology 217(2):127–146

    Article  Google Scholar 

  • Klein R, Davis MD, Magli YL, Segal P, Klein BE, Hubbard L (1991) The Wisconsin age-related maculopathy grading system. Ophthalmology 98(7):1128–1134

    Article  Google Scholar 

  • Mookiah MRK, Rajendra Acharya U, Fujita H, Koh JEW, Tan JH, Chua CK, Bhandary SV, Noronha K, Laude A, Tong L (2015) Automated detection of age-related macular degeneration using empirical mode decomposition. Knowl Based Syst 89:654–668

    Article  Google Scholar 

  • Tan JH, Bhandary SV, Sivaprasad S, Hagiwara Y, Bagchi A, Raghavendra U, Rao AK, Raju B, Shetty NS, Gertych A, Chua Chua K, Acharya UR (2018) Age-related macular degeneration detection using deep convolutional neural network. Future Gener Comput Syst 87:127–135

    Article  Google Scholar 

  • Jang Y, Son J, Park KH, Park SJ, Jung K-H (2018) Laterality classification of fundus images using interpretable deep neural network. J Digit Imaging 31(6):923–928

    Article  Google Scholar 

  • Hemanth DJ, Deperlioglu O, Kose U (2020) An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network. Neural Comput Appl 32:707–721. https://doi.org/10.1007/s00521-018-03974-0

    Article  Google Scholar 

  • Marin D, Gegundez-Arias ME, Ponte B, Alvarez F, Garrido J, Ortega C, Vasallo MJ, Bravo JM (2018) An exudate detection method for diagnosis risk of diabetic macular edema in retinal images using feature-based and supervised classification. Med Biol Eng Compu 56(8):1379–1390

    Article  Google Scholar 

  • Adal KM, van Etten PG, Martinez JP, Rouwen KW, Vermeer KA, van Vliet LJ (2018) An automated system for the detection and classification of retinal changes due to red lesions in longitudinal fundus images. IEEE Trans Biomed Eng 65(6):1382–1390. https://doi.org/10.1109/TBME.2017.2752701

    Article  Google Scholar 

  • de Sousa JA, de Paiva AC, de Sousa Almeida JD et al (2017) Texture based on geostatistic for glaucoma diagnosis from fundus eye image. Multimed Tools Appl 76:19173–19190. https://doi.org/10.1007/s11042-017-4608-y

    Article  Google Scholar 

  • Prakash NB, Selvathi D (2017) An efficient detection system for screening glaucoma in retinal images. Biomed Pharmacol J 10(1):459–465

    Article  Google Scholar 

  • Shrestha S (2014) Image denoising using new adaptive based median filter. Signal Image Processing Int J (SIPIJ) 5(4):1–14. https://doi.org/10.5121/sipij.2014.5401

    Article  MathSciNet  Google Scholar 

  • Kamra A, Kaur M (2017) A novel approach for contrast enhancement of gray scale images using multiscale morphology. Int Res J Adv Eng Sci 2(3):12–15

    Google Scholar 

  • M Kaur, JS Sohal (2017) Improved algorithm based on multiscale morphology for intensification of gray scale images. 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, 2017, pp 2413–2418. doi: https://doi.org/10.1109/ICECDS.2017.8389882.

  • Yavuz Z, Köse C (2017) Blood vessel extraction in color retinal fundus images with enhancement filtering and unsupervised classification. J Healthcare Eng. https://doi.org/10.1155/2017/4897258

    Article  Google Scholar 

  • Kolhe RA, Deshpande AS (2016) DRLBP and DRLTP based object recognition for image retrieval systems. Int J Adv Res Comput Commun Eng 5(9):291–296. https://doi.org/10.17148/IJARCCE.2016.5962

    Article  Google Scholar 

  • Shrivakshan GT (2012) A comparison of various edge detection techniques used in image processing. Int J Comput SciIssues 9(5):269–276

    Google Scholar 

  • AA Hussein, X Yang (2011) A statistical approach to interactive image segmentation. In: 2011 International Conference on Multimedia Technology, Hangzhou, 2011, pp 5260–5263. doi: https://doi.org/10.1109/ICMT.2011.6002016.

  • Yang F, Xia G-S, Liu G, Zhang L, Huang X (2016) Dynamic texture recognition by aggregating spatial and temporal features via ensemble SVMs. Neurocomputing 173(3):1310–1321

    Article  Google Scholar 

  • Prakasa E (2015) Texture feature extraction by using local binary pattern. INKOM 9(2):45–48

    Article  Google Scholar 

  • Satpathy A, Jiang X, Eng H-L (2014) LBP-based edge-texture features for object recognition. IEEE Trans Image Processing 23(5):1953–1964

    Article  MathSciNet  Google Scholar 

  • You W, Shen C, Guo X, Jiang X, Shi J, Zhu Z (2017) A hybrid technique based on convolutional neural network and support vector regression for intelligent diagnosis of rotating machinery. Adv Mech Eng. https://doi.org/10.1177/1687814017704146

    Article  Google Scholar 

  • https://cecas.clemson.edu/~ahoover/stare/

Download references

Acknowledgements

The authors would like to express their sincere thanks to the journal editorial committee members, reviewers for the valuable suggestions provided towards the improvement of the paper. The authors also extend their gratitude to Head of CSE, ECE and EIE Department of National Engineering College for the constant encouragement and support rendered to carry out the research work comfortably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Hemalakshmi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemalakshmi, G.R., Santhi, D., Mani, V.R.S. et al. Classification of retinal fundus image using MS-DRLBP features and CNN-RBF classifier. J Ambient Intell Human Comput 12, 8747–8762 (2021). https://doi.org/10.1007/s12652-020-02647-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-02647-y

Keywords

Navigation