Skip to main content
Log in

RETRACTED ARTICLE: Fundus image lesion detection algorithm for diabetic retinopathy screening

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

This article was retracted on 04 July 2022

This article has been updated

Abstract

An eye disease that damages the retina of diabetic patients is known as diabetic retinopathy (DR). The severity of the disease is found by different lesions such as hemorrhages, microaneurysms, exudates etc., these are the early stage symptoms of non-proliferative DR for early analysis of DR. A single framework for instinctive Lesion Detection used for diagnosis of the disease easily by screening is proposed. It consists of four steps: luminosity and contrast enhancement, removal of extracted blood vessels and optic disc (OD), lesion detection and classification based on lesions. Gamma correction and CLAHE for luminosity and contrast enhancement. Principle component analysis for vessel extraction and using convex hull transform for OD detection. After background subtraction, lesions are detected using morphological operations and classification based on count of lesions. The proposed algorithm is analyzed using the publically available datasets and evaluated using the metrics of specificity, sensitivity and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

References

  • Agurto C et al (2014) A multiscale optimization approach to detect exudates in the macula. IEEE J Biomed Health Inform 18(4):1328–1336

    Article  Google Scholar 

  • Akram MU et al (2014a) Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput Biol Med 45:161–171

    Article  Google Scholar 

  • Akram MU, Khalid S, Tariq A, Khan SA, Azam F (2014b) Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput Biol Med 45:161–171

    Article  Google Scholar 

  • Annunziata R, Garzelli A, Ballerin L, Mecocci A, Trucco E (2016) Leveraging multiscale hessian-based enhancement with a novel exudate inpainting technique for retinal vessel segmentation. IEEE J Biomed Health Inform 20(4):1129–1138

    Article  Google Scholar 

  • Balasubramanian K, Ananthamoorthy NP (2019) Robust retinal blood vessel segmentation using convolutional neural network and support vector machine. J Ambient Intell Hum Comput. https://doi.org/10.1007/s12652-019-01559-w

    Article  Google Scholar 

  • Dashtbozorg B, Zhang J, Huang F, ter Haar Romeny BM (2018) Retinal microaneurysms detection using local convergence index features. IEEE Trans Image Process 27(7):3300–3315

    Article  MathSciNet  Google Scholar 

  • Esmaeili M, Rabbani H, Dehnavi AM, Dehghani A (2012) Automatic detection of exudates and optic disk in retinal images using curvelet transform. IET Image Process 6(7):1005–1013. https://doi.org/10.1049/iet-ipr.2011.0333

    Article  MathSciNet  Google Scholar 

  • Fleming AD, Philip S, Goatman KA, Olson JA, Sharp PF (2006) Automated micro aneurysm detection using local contrast normalization and local vessel detection. IEEE Trans Med Imaging 25(9):1223–1232

    Article  Google Scholar 

  • Gadkari SS, Maskati QB, Nayak BK (2016) Prevalence of diabetic retinopathy in India: the all India ophthalmological society diabetic retinopathy eye screening study. Indian J Ophthalmol 64:38–44

    Article  Google Scholar 

  • Hoover A et al (2000) Locating blood vessels in retinal images by piece-wise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210

    Article  Google Scholar 

  • Huang S-C, Cheng F-C, Chiu Y-S (2013) Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans Image Process 22(3):1032–1041

    Article  MathSciNet  Google Scholar 

  • Iqbal MI, Gubbal NS, Aibinu AM, Khan A (2006) Automatic diagnosis of diabetic retinopathy using fundus images’. Masters thesis, Blekinge Institute of Technology

  • Kalesnykiene V et al (2007) Diaretdb1 diabetic retinopathy database and evaluation protocol [online]. https://www.it.lut.fi/project/imageret/diaretdb1. Accessed 9 Apr 2018

  • Kar SS, Maity SP (2018) Automatic detection of retinal lesions for screening of diabetic retinopathy. IEEE Trans Biomed Eng 65(3):608–618

    Article  Google Scholar 

  • Li H, Chutatape O (2004) Automated feature extraction in color retinal images by a model based approach. IEEE Trans Biomed Eng 51(2):246–254

    Article  Google Scholar 

  • Li T, Gao Y, Wang K, Guo S, Liu H, Kang H (2019) Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening. Inf Sci. https://doi.org/10.1016/j.ins.2019.06.011

    Article  Google Scholar 

  • Mansoor AB, Khan Z, Khan A, Khan SA (2008) Enhancement of exudates for the diagnosis of diabetic retinopathy using fuzzy morphology. In: 2008 IEEE International Multitopic Conference. https://doi.org/10.1109/INMIC.2008.4777722

  • Messidor (2008) [Online]. https://www.messidor.crihan.fr/indexen.php. Accessed 9 Apr 2018

  • Mudrova M, Prochazka A (2005) Principal component analysis in image processing. In: Proceedings of the MATLAB technical computing conference, Prague

  • Niemeijer M et al (2004) DRIVE: digital retinal images for vessel extraction [online]. https://www.isi.uu.nl/Research/Databases/DRIVE. Accessed 9 Apr 2018

  • Niemeijer M et al (2010) Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans Med Imaging 29(1):185–195

    Article  Google Scholar 

  • Osareh A, Shadgar B, Markham R (2009) A Computational-intelligence-based approach for detection of exudates in diabetic retinopathy images. IEEE Trans Inf Technol Biomed 13(4):535–545

    Article  Google Scholar 

  • Quellec G et al (2008) Optimal wavelet transform for the detection of microaneurysms in retina photographs. IEEE Trans Med Imaging 27(9):1230–1241

    Article  Google Scholar 

  • Sahu D, Meshram S (2016) Automatic detection of hemorrhages using image processing technique. Int J Eng Sci Res Technol 5:853–857

    Google Scholar 

  • Sopharak A, Uyyanonvara B, Barmanb S, Williamson TH (2008) Automatic detection of diabetic retinopathy exudates from non- dilated retinal images using mathematical morphology methods. Comput Med Imaging Gr 32:720–727

    Article  Google Scholar 

  • Ullaha H, Islam N, Jan Z et al (2018) Optic disc segmentation and classification in color fundus images: a resource-aware healthcare service in smart cities. J Ambient Intell Hum Comput. https://doi.org/10.1007/s12652-018-0988-8

    Article  Google Scholar 

  • Valarmathi R, Saravanan S (2019) Exudate characterization to diagnose diabetic retinopathy using generalized method. J Ambient Intell Hum Comput. https://doi.org/10.1007/s12652-019-01617-3

    Article  Google Scholar 

  • Walter T et al (2002) A contribution of image processing to the diagnosis of diabetic retinopathy—detection of exudates in color fundus images of the human retina. IEEE Trans Med Imaging 21(10):1236–1243

    Article  Google Scholar 

  • Yau JWY et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3):556–564

    Article  Google Scholar 

  • Zhou W, Wu C, Yi Y, Du W (2017a) Automatic detection of exudates in digital color fundus images using superpixel multi-feature classification. IEEE Access 5:17077–17088

    Article  Google Scholar 

  • Zhou W, Wu C, Chen D, Wang Z, Yi Y, Du W (2017b) A novel approach for red lesions detection using superpixel multi-feature classification in color fundus images. In: 2017 29th Chinese Control And Decision Conference (CCDC), IEEE, Chongqing, pp. 6643–6648. https://doi.org/10.1109/CCDC.2017.7978371

  • Zhou M, Jin K, Wang S, Ye J, Qian D (2018) Color retinal image enhancement based on luminosity and contrast adjustment. IEEE Trans Biomed Eng 65(3):521–527. https://doi.org/10.1109/TBME.2017.2700627

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kanimozhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s12652-022-04256-3

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanimozhi, J., Vasuki, P. & Roomi, S.M.M. RETRACTED ARTICLE: Fundus image lesion detection algorithm for diabetic retinopathy screening. J Ambient Intell Human Comput 12, 7407–7416 (2021). https://doi.org/10.1007/s12652-020-02417-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-02417-w

Keywords

Navigation