Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: High-throughput field-programable gate array implementation of the advanced encryption standard algorithm for automotive security applications

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

This article was retracted on 04 July 2022

This article has been updated

Abstract

Connected smart vehicles in automotive industries have increased, resulting in high vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-cloud connectivity. Increased data rates are required to achieve high bandwidth requirements to support such communication networks. Despite having numerous advantages, high connectivity between devices poses threats to vehicle and human security, rendering encryption critical before transmitting data across vehicular networks. Advanced encryption standard (AES) is commonly used for data encryption in automotive microcontrollers. Owing to modern digital design complexities, field-programmable gate arrays (FPGAs) are attracting attention for pre-silicon verification and software development. Owing to their parallel architectures, FPGAs are ideal for prototyping automotive designs running encryption algorithms, like AES at real-time data rates. Moreover, because they are reconfigurable, prototyping results of different implementation choices can be verified at an early stage, thereby helping architects and designers with forthcoming optimal designs. FPGAs also serve as platforms to develop software considerably before silicon arrives, thereby decreasing the time to market. Herein, we propose a high-throughput FPGA implementation of the AES algorithm for automotive microcontrollers using a 128-bit key created via Vivado high-level synthesis (HLS) tool. We use HLS design method based on application-specific bit widths to implement the design on FPGA. The generated design is implemented and verified using Xilinx Kintex 7 and Virtex 6 FPGA; despite identical resource utilization (Look up tables and Flip-Flops), the throughput results are superior to those obtained previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prateek Sikka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s12652-022-04250-9

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikka, P., Asati, A.R. & Shekhar, C. RETRACTED ARTICLE: High-throughput field-programable gate array implementation of the advanced encryption standard algorithm for automotive security applications. J Ambient Intell Human Comput 12, 7273–7279 (2021). https://doi.org/10.1007/s12652-020-02403-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-02403-2

Keywords

Navigation