Skip to main content

eeglib: computational analysis of cognitive performance during the use of video games

Abstract

Cognitive training can improve mental abilities, and a novel method to apply it is trough video games. There is controversy about the effectiveness of commercial video games for brain training, therefore it is necessary to assess the utility of these kinds of games. One quantitative method to assess it is electroencephalography (EEG), a non-invasive technique to study brain activity. This paper explores the use of EEG and video games together to find what are the most used techniques when analyzing the signals by means of a systematic review. From the results of that review two partial contributions were obtained: a taxonomy of techniques to analyze EEG signals, and a ranking of these techniques based on their popularity. The partial contributions were the departure point for working in the main contribution of this paper: eeglib, a Python library for analyzing EEG. The library was tested technically and functionally. The technical test was oriented to assess the correct output of certain algorithms, while the functional one consisted in analyzing data from two different experiments to check the effectiveness of the library.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. A Consensus on the Brain Training Industry from the Scientific Community (Summary) – Stanford Center on Longevity. http://longevity.stanford.edu/a-consensus-on-the-brain-training-industry-from-the-scientific-community Accessed 28 May 2019.

  2. Aydore S, Pantazis D, Leahy RM (2013) A note on the phase locking value and its properties. Neuroimage 74:231–244. https://doi.org/10.1016/j.neuroimage.2013.02.008

    Article  Google Scholar 

  3. Bai O, Lin P, Huang D, Fei D-Y, Floeter MK (2010) Towards a user-friendly brain-computer interface: initial tests in ALS and PLS patients. Clin Neurophysiol 121(8):1293–1303. https://doi.org/10.1016/j.clinph.2010.02.157

    Article  Google Scholar 

  4. Ball K, Berch DB, Helmers KF, Jobe JB, Leveck MD et al (2002) Effects of Cognitive Training Interventions With Older Adults. JAMA 288(18):2271–2281

    Article  Google Scholar 

  5. Berta R, Bellotti F, De G, Pranantha D, Schatten C (2013) Electroencephalogram and physiological signal analysis for assessing flow in games. IEEE Trans Computat Intell AI Games 5(2):164–175. https://doi.org/10.1109/tciaig.2013.2260340

    Article  Google Scholar 

  6. Blackman RB, Tukey JW (1958) The measurement of power spectra from the point of view of communications engineering—part I. Bell Syst Tech J 37(1):185–282. https://doi.org/10.1002/j.1538-7305.1958.tb03874.x

    Article  Google Scholar 

  7. Cabañero-Gómez L, Hervas R, Bravo J, Rodriguez-Benitez L (2018) Computational EEG analysis techniques when playing video games: a systematic review. In: Proceedings 2(19): 483. https://doi.org/10.3390/proceedings2190483

    Article  Google Scholar 

  8. Chanel G, Rebetez C, Bétrancourt M, Pun T (2011) Emotion assessment from physiological signals for adaptation of game difficulty. IEEE Trans Syst Man Cybern Part A Syst Hum 41(6):1052–1063. https://doi.org/10.1109/tsmca.2011.2116000

    Article  Google Scholar 

  9. ChatterjeeD, Sinharay A, Pal A (2014) Cognitive load detection on commercial eeg devices: an optimized signal processing chain

  10. Cognitive Training Data Response Letter. Cognitive Training Data. https://www.cognitivetrainingdata.org/the-controversy-does-brain-training-work/response-letter/(accessed 28 May 2019

  11. Comon P (1994) Independent component analysis, A new concept? Signal Process 36(3):287–314. https://doi.org/10.1016/0165-1684(94)90029-9

    Article  MATH  Google Scholar 

  12. Cooley JW, Tukey JW (1965) An Algorithm for the Machine Calculation of Complex Fourier Series. Mathematics of Computation 19(90):297–301. https://doi.org/10.2307/2003354

    MathSciNet  Article  MATH  Google Scholar 

  13. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  14. Finke A, Lenhardt A, Ritter H (2009) The MindGame: a P300-based brain-computer interface game. Neural Networks 22(9):1329–1333. https://doi.org/10.1016/j.neunet.2009.07.003

    Article  Google Scholar 

  15. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugenics 7(2):179–188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

    Article  Google Scholar 

  16. Grossmann A, Morlet J (1984) Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape. SIAM J Math Anal 15(4):723–736. https://doi.org/10.1137/0515056

    MathSciNet  Article  MATH  Google Scholar 

  17. Herrmann B (2019a) Detrended fluctuation analysis. http://bjornherrmann.com/DetrendedFluctuationAnalysis.html Accessed 28 May 2019.

  18. Herrmann B (2019b) Multi-scale entropy. http://bjornherrmann.com/MultiScaleEntropy.html Accessed 28 May 2019.

  19. Hervás R, Ruiz-Carrasco D, Mondéjar T, Bravo J (2017) Gamification mechanics for behavioral change: a systematic review and proposed taxonomy. 11th EAI International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth 2017). Workshop on Health-i-coach intelligent technologies for coaching in health. Barcelona (Spain) 23-26 May, 2017. ACM

  20. Higuchi T (1988) Approach to an irregular time series on the basis of the fractal theory. Physica D 31(2):277–283. https://doi.org/10.1016/0167-2789(88)90081-4

    MathSciNet  Article  MATH  Google Scholar 

  21. Huang D, Qian K, Fei D-Y, Jia W, Chen X et al (2012) Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control. IEEE Trans Neural Syst Rehabil Eng 20(3):379–388. https://doi.org/10.1109/tnsre.2012.2190299

    Article  Google Scholar 

  22. Johnny CL, Tan DS (2006) Using a low-cost electroencephalograph for task classification in HCI research. p. 81–90

  23. Johnson E, Hervás R, Gutiérrez-López-Franca C, Mondéjar T, Ochoa SF, Favela J (2018) Assessing empathy and managing emotions through interactions with an affective avatar. J Health Inform 24(2):182–193. https://doi.org/10.1177/1460458216661864

    Article  Google Scholar 

  24. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29(2–3):169–195. https://doi.org/10.1016/s0165-0173(98)00056-3

    Article  Google Scholar 

  25. Konstantinidis EN, Conci G, Bamparopoulos EA, Sidiropoulos F, De Natale et al. (2015) Introducing Neuroberry, a platform for pervasive EEG signaling in the IoT domain

  26. Lalor EC, Kelly SP, Finucane C, Burke R, Smith R et al (2005) Steady-state VEP-based brain-computer interface control in an immersive 3D gaming environment. Eurasip J Appl Signal Process 2005(19):3156–3164. https://doi.org/10.1155/asp.2005.3156

    Article  MATH  Google Scholar 

  27. Lempel A, Ziv J (1976) On the Complexity of Finite Sequences. IEEE Trans Inf Theory 22(1):75–81. https://doi.org/10.1109/tit.1976.1055501

    MathSciNet  Article  MATH  Google Scholar 

  28. Luck SJ (2005) An introduction to the event-related potential technique. MIT Press, Cambridge, MA

    Google Scholar 

  29. Mandelbrot BB (1982) The fractal geometry of nature. W. H. Freeman, San Francisco

  30. Menezes MLR, Samara A, Galway L, Sant’Anna A, Verikas A et al (2017) Towards emotion recognition for virtual environments: an evaluation of eeg features on benchmark dataset. Pers Ubiquit Comput 21(6):1003–1013. https://doi.org/10.1007/s00779-017-1072-7

    Article  Google Scholar 

  31. Millán JDR, Ferrez PW, Galán F, Lew E, Chavarriaga R (2008) Non-invasive brain-machine interaction. Int J Pattern Recognit Artif Intell 22(5):959–972. https://doi.org/10.1142/s0218001408006600

    Article  Google Scholar 

  32. Mondéjar T, Hervás R, Johnson E, Gutierrez-López-Franca C, Latorre JM (2016) Correlation between videogame mechanics and executive functions through EEG analysis. J Biomed Inform 63:131–140. https://doi.org/10.1016/j.jbi.2016.08.006

    Article  Google Scholar 

  33. Mondéjar T, Hervás R, Johnson E, Gutiérrez-López-Franca C, Latorre JM (2019) Analyzing EEG waves to support the design of serious games for cognitive training. J Ambient Intell Human Comput 10(6):2161–2174. https://doi.org/10.1007/s12652-018-0841-0

    Article  Google Scholar 

  34. Mu Y, Guo C, Han S (2016) Oxytocin enhances inter-brain synchrony during social coordination in male adults. Soc Cognit Affect Neurosci 11(12):1882–1893

    Article  Google Scholar 

  35. Müller M (2007) Dynamic time warping. information retrieval for music and motion. Springer, Berlin, Heidelberg pp: 69–84.

  36. Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24:5–12

    Google Scholar 

  37. Pearson K (1901) LIII On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine. J Sci 2(11):559–572. https://doi.org/10.1080/14786440109462720

    Article  Google Scholar 

  38. Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE et al (1994) Mosaic organization of DNA nucleotides. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 49(2):1685–1689

    Google Scholar 

  39. Pregenzer MD, Flotzinger, Pfurtscheller G (1994) Distinction Sensitive Learning Vector Quantisation-a new noise-insensitive classification method., 1994 IEEE International Conference on Neural Networks, 1994. IEEE World Congress on Computational Intelligence. p. 2890–2894.

  40. Raghavendra BS, Dutt D (2010) Computing fractal dimension of signals using multiresolution box-counting method. World Acad Sci Eng Technol 37:1266–1281

    Google Scholar 

  41. Rao CR (1948) The utilization of multiple measurements in problems of biological classification. J R Stat Soc 10(2):159–203

    MathSciNet  MATH  Google Scholar 

  42. Reuderink B, Nijholt A, Poel M (2009) Affective Pacman: a frustrating game for brain-computer interface experiments. Intelligent technologies for interactive entertainment. Springer, Berlin, pp 221–227

    Book  Google Scholar 

  43. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol-Heart Circul Physiol 278(6):H2039–H2049. https://doi.org/10.1152/ajpheart.2000.278.6.h2039

    Article  Google Scholar 

  44. Russoniello CV, O’Brien K, Parks JM (2009) The effectiveness of casual video games in improving mood and decreasing stress. J Cyber Ther Rehabilit 2(1):53–66

    Google Scholar 

  45. Scherer R, Lee F, Schlögl A, Leeb R, Bischof H et al (2008) Toward self-paced brain-computer communication: navigation through virtual worlds. IEEE Trans Biomed Eng 55(2):675–682. https://doi.org/10.1109/tbme.2007.903709

    Article  Google Scholar 

  46. Wang Q, Sourina O, Nguyen MK (2011) Fractal dimension based neurofeedback in serious games. Vis Comput 27(4):299–309. https://doi.org/10.1007/s00371-011-0551-5

    Article  Google Scholar 

  47. Willis SL, Schaie KW (2009) Cognitive training and plasticity: theoretical perspective and methodological consequences. Restor Neurol Neurosci 27(5):375–389. https://doi.org/10.3233/rnn-2009-0527

    Article  Google Scholar 

  48. Zhang H (2004) The Optimality of Naïve Bayes. In FLAIRS2004 conference

  49. Zhang C, Wang H, Wu M-H (2013) EEG-based expert system using complexity measures and probability density function control in alpha sub-band. Integr Comput-Aided Eng 20(4):391–405. https://doi.org/10.3233/ica-130439

    Article  Google Scholar 

Download references

Funding

This research was funded by Ministry of Science, Innovation and Universities Grant No [RTI2018-098,780-B-I00].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ramón Hervás.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cabañero, L., Hervás, R., Bravo, J. et al. eeglib: computational analysis of cognitive performance during the use of video games. J Ambient Intell Human Comput (2019). https://doi.org/10.1007/s12652-019-01592-9

Download citation

Keywords

  • EEG
  • Video games
  • Cognitive performance
  • Computation techniques
  • Serious games
  • Taxonomy