Skip to main content
Log in

A Jacobian approach for calculating the Lyapunov exponents of short time series using support vector regression

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

In order to characterize a system and to analyze the predictability of the time series under investigation, the detection of chaos and fractal behavior in experimental data is essential. In this work, support vector regression with two different kernel types namely, the linear kernel and sigmoid kernel, has been utilized for the calculation of the Lyapunov exponents of the given time series. The developed technique for the estimation of Lyapunov exponents has been validated with the help of time series generated from well known chaotic maps and also by comparing the Lyapunov exponents obtained using Rosenstein method. The results of this work reveal that the proposed technique is capable of producing accurate positive exponents for all the considered chaotic maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ambikapathy B, Krishnamurthy K (2018) Analysis of electromyograms recorded using invasive and noninvasive electrodes: a study based on entropy and Lyapunov exponents estimated using artificial neural networks. J Ambient Intell Hum Comput 1–9

  • Ataei M, Khaki-Sedigh A, Lohmann B, Lucas C (2003) Estimating the Lyapunov exponents of chaotic time series: a model based method. European control conference

  • Basak D, Pal S, Patranabis DC (2007) Support vector regression. Neural Information Processing-Letters and Reviews 11(10):203–224

    Google Scholar 

  • Beck C, Schlgl F (1993) Thermodynamics of chaotic systems. Volume 4 of Cambridge nonlinear science series. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cao L (2003) Support vector machines experts for time series forecasting. Neurocomputing 51:321–339

    Article  Google Scholar 

  • Chen P (1988) Empirical and theoretical evidence of economic chaos. Syst Dyn Rev 4:81

    Article  Google Scholar 

  • Das A, Das P, Roy AB (2002) Applicability of Lyapunov exponent in EEG data analysis. Complex Int 9:1–8

    MathSciNet  MATH  Google Scholar 

  • Devaney RL (1989) An introduction to chaotic dynamical systems, 2nd edn. Addison Wesley, Redwood City

    MATH  Google Scholar 

  • Eckmann J-P, Ruelle D (1985) Ergodic theory of chaos and strange attractors. Rev Mod Phys 57:617–656

    Article  MathSciNet  MATH  Google Scholar 

  • Eckmann JP, Kamphorst SO, Ruelle D, Ciliberto S (1986) Liapunov exponents from time series. Phys Rev A 34(6):4971–4979

    Article  MathSciNet  Google Scholar 

  • Edmonds AN (1996) Time series prediction using supervised learning and tools from chaos theory, Ph.D Thesis

  • Fernnandez R (1999) Predicting time series with a local support vector regression machine, ACAI 99

  • Frank GW, Lookman T, Nerenberg MAH, Essex C, Lemieux J, Blume W (1990) Chaotic time series analysis of epileptic seizures. Physica D 46:427

    Article  MATH  Google Scholar 

  • Frontzek T, Lal TN, Eckmiller R (2001) Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels. Proc Int Joint Conf Neural Netw 2:1492–1497

    Article  MATH  Google Scholar 

  • Fukunaga M, Arita S, Ishino S, Nakai Y (2000) Quantitative analysis of gastric electric stress response with chaos theory. Biomed Soft Comput Hum Sci 5(2):59–64

    Google Scholar 

  • Gunn S (1998) Support vector machines for classification and regression, ISIS Technical Report

  • Huang K, Yang H, King I, Lyu MR (2006) Local support vector regression for financial time series prediction, International Joint Conference on Neural Networks, Vancouver, BC, Canada

  • Jaeseung J, Jeong-Ho C, Kim SY, Seol-Heui H (2001) Nonlinear dynamical analysis of the EEG in patients with Alzheimer’s disease and vacular dementia. Clin Neurophysiol 18:58–67

    Article  Google Scholar 

  • Kamalanand K (2012) A method for estimating the Lyapunov exponents of chaotic time series corrupted by random noise using Extended Kalman Filter. Commun Comput Sci Inf Syst 283:237–244

    MathSciNet  Google Scholar 

  • Kamalanand K, Jawahar PM (2013) Unscented transformation for estimating the Lyapunov exponents of chaotic time series corrupted by random noise. Int J Math Sci 7(4):1–6

    Google Scholar 

  • Kamalanand K, Ramakrishnan S (2010) A Method for classification of normal and MyopathicEmg signals using chaos Theory, Proceedings of ICAMMM 2010, 13–15 Dec 2010, Sultan Qaboos University, Oman

  • Kodba S, Perc M, Marhl M (2005) Detecting Chaos from a time series. Eur J Phys 26(1):205

    Article  Google Scholar 

  • Lillekjendlie B, Kugiumtzis D, Christophersen N (1995) Chaotic time series Part II System identification and prediction

  • McCaffrey DF, Ellner S, Gallant AR, Nychka DW (1992) Estimating the Lyapunov exponent of a chaotic system with nonparametric regression. J Am Stat Assoc 87(419):682–695

    Article  MathSciNet  MATH  Google Scholar 

  • Mehr AD, Nourani V, Khosrowshahi VK, Ghorbani MA (2019) A hybrid support vector regression–firefly model for monthly rainfall forecasting. Int J Environ Sci Technol 16(1):335–346

    Article  Google Scholar 

  • Michel RG, Glass L, Mackey M, Shrier A (1983) Chaos in neurobiology. IEEE Trans Sys Man Cybern 13(5):790–798

    MATH  Google Scholar 

  • Mohammadi S (2009) LYAPEXPAN: MATLAB function to calculate Lyapunov exponents with Taylor expansion. http://ideas.repec.org/c/boc/bocode/t741505.html

  • Mukherjee S, Osuna E, Girosi F (1997) Nonlinear prediction of chaotic time series using support vector machines, Proceedings of IEEE NNSP’97, Amelia Island, FL

  • Muller KR, Smola A, Scholkopf B (1997) Prediction time series with support vector machines. Proceedings of International Conference on Artifcial Neural Networks, Lausanne, Switzerland, 999

  • Murillo-Escobar J, Sepulveda-Suescun JP, Correa MA, Orrego-Metaute D (2019) Forecasting concentrations of air pollutants using support vector regression improved with particle swarm optimization: case study in Aburrá Valley, Colombia. Urban Clim 29:100473

    Article  Google Scholar 

  • Nychka D, Ellner S, Gallant AR, McCaHrey D (1992) Finding chaos in noisy system. J R Stat Soc B 54:399–426

    MathSciNet  Google Scholar 

  • Ricker WE (1954) Stock and recruitment. J Fisheries Res Board Can 11:559–623

    Article  Google Scholar 

  • Rosenstein MT, Collins JJ, De Luca CJ (1993) A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65:117–134

    Article  MathSciNet  MATH  Google Scholar 

  • Sano M, Sawada Y (1985) Measurement of the Lyapunov spectrum from a chaotic time series. Phys Rev Lett 55(10):1082–1085

    Article  MathSciNet  Google Scholar 

  • Shintani M, Linton O (2004) Nonparametric neural network estimation of Lyapunov exponents and a direct test for chaos. J Econom 120:1–33

    Article  MathSciNet  MATH  Google Scholar 

  • Smola AJ (1998) Learning with Kernels. PhD Thesis, GMD, Birlinghoven, Germany

  • Sprott JC (2003) Chaos and time series analysis. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Strogatz SH (1994) Nonlinear dynamics and chaos. Perseus Publishing, New York

    Google Scholar 

  • Tay FEH, Cao LJ (2001) Application of support vector machines in financial time series forecasting. Omega 29(4):309–317

    Article  Google Scholar 

  • Vapnik VN, Golowich SE, Smola AJ (1996) Support vector method for function approximation, regression estimation, and signal processing. Adv Neural Inf Process Syst 9:281–287

    Google Scholar 

  • Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Physica D 16:285–317

    Article  MathSciNet  MATH  Google Scholar 

  • www.physionet.org/physiobank/

  • Zeng X, Eykholt R, Pielke RA (1991) Estimating the Lyapunov-Exponent spectrum from short time series of low precision. Phys Rev Lett 66:3229

    Article  Google Scholar 

  • Zhang J, Teng YF, Chen W (2019) Support vector regression with modified firefly algorithm for stock price forecasting. Appl Intell 49(5):1658–1674

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamalanand Krishnamurthy.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamurthy, K., Manoharan, S.C. & Swaminathan, R. A Jacobian approach for calculating the Lyapunov exponents of short time series using support vector regression. J Ambient Intell Human Comput 11, 3329–3335 (2020). https://doi.org/10.1007/s12652-019-01525-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-019-01525-6

Keywords

Navigation