Skip to main content

Message anonymity on predictable opportunistic networks


A Predictable Opportunistic Network (POppNet) is a network where end-to-end connectivity is not guaranteed, and node communication happens in an opportunistic manner, but the behavior of the network can be predicted in advance. The predictability of such networks can be exploited to simplify some mechanisms of more generic OppNets where there is no prior knowledge on the network behavior. In this paper, we propose some solutions to provide anonymity for messages on POppNets by using simple onion routing, and thus to increase the privacy of the nodes in communication.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  • Antunez-Veas A, Navarro-Arribas G (2016) Onion routing in deterministic delay tolerant networks. In: Foundations and practice of security. Springer, Berlin, pp 303–310 (no. 9482 in Lecture Notes in Computer Science)

  • Borah SJ, Dhurandher SK, Woungang I, Kumar V, Barolli L (2018) A multi-objectives based technique for optimized routing in opportunistic networks. J Ambient Intell Hum Comput 9(3):655–666

    Article  Google Scholar 

  • Borrego C, Borrell J, Robles S (2019) Efficient broadcast in opportunistic networks using optimal stopping theory. Ad Hoc Networks 88:5–17.

    Article  Google Scholar 

  • Casteigts A, Flocchini P, Quattrociocchi W, Santoro N (2012) Time-varying graphs and dynamic networks. Int J Parallel Emerg Distrib Syst 27(5):387–408

    Article  Google Scholar 

  • Castillo-Perez S, Garcia-Alfaro J (2013) Onion routing circuit construction via latency graphs. Comput Secur 37:197–214.

    Article  Google Scholar 

  • Chen D, Navarro-Arribas G, Borrell J (2017) On the applicability of onion routing on predictable delay-tolerant networks. In: 2017 IEEE 42nd conference on local computer networks (LCN), pp 575–578.

  • Diaz C, Seys S, Claessens J, Preneel B (2002) Towards measuring anonymity. Privacy enhancing technologies. Springer, Berlin, Heidelberg, pp 54–68 (Lecture Notes in Computer Science)

    MATH  Google Scholar 

  • Fan L, Minsu H, Zhiyuan Y, Chao Z, Wang Y (2015) Reliable topology design in time-evolving delay-tolerant networks with unreliable links. IEEE Trans Mob Comput 14(6):1301–1314

    Article  Google Scholar 

  • Fraire J, Finochietto JM (2015) Routing-aware fair contact plan design for predictable delay tolerant networks. Ad Hoc Netw 25:303–313

    Article  Google Scholar 

  • Goldschlag DM, Reed MG, Syverson PF (1996) Hiding routing information. In: Anderson R (eds) Information hiding. IH 1996. Lecture notes in computer science, vol 1174. Springer, Berlin, pp 137–150

    Google Scholar 

  • Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125

    Article  Google Scholar 

  • Huang M, Chen S, Fan L, Yu W (2015) Topology design in time-evolving delay-tolerant networks with unreliable links. In: 2012 IEEE global communications conference (GLOBECOM), Anaheim, CA, 2012, pp 5296–5301.

  • Jain S, Fall K, Patra R (2004) Routing in a delay tolerant network. In: Proceedings of the 2004 conference on applications, technologies, architectures, and protocols for computer communications (SIGCOMM '04). ACM, New York, NY, USA, pp 145–158.

  • Jetcheva JG, Hu YC, PalChaudhuri S, Saha AK, Johnson DB (2003) CRAWDAD dataset rice/ad\_hoc\_city (v. 2003-09-11). 10.15783/C73K5B

  • Kate A, Zaverucha GM, Hengartner U (2007) Anonymity and security in delay tolerant networks. In: Third international conference on security and privacy in communications networks and the workshops, 2007. SecureComm 2007, IEEE, pp 504–513

  • Kostakos V (2009) Temporal graphs. Phys A Stat Mech Appl 388(6):1007–1023

    MathSciNet  Article  Google Scholar 

  • Lu X, Hui P, Towsley D, Pu J, Xiong Z (2010) Anti-localization anonymous routing for delay tolerant network. Comput Netw 54(11):1099–1910

    Article  MATH  Google Scholar 

  • Machanavajjhala A, Kifer D, Gehrke J, Venkitasubramaniam M (2007) L-diversity: privacy beyond k-anonymity. ACM Trans Knowl Discov Data 1(1):3.

    Article  Google Scholar 

  • Mota VF, Cunha FD, Macedo DF, Nogueira JM, Loureiro AA (2014) Protocols, mobility models and tools in opportunistic networks: a survey. Comput Commun 48:5–19.

    Article  Google Scholar 

  • Pan RK, Saramäki J (2011) Path lengths, correlations, and centrality in temporal networks. Phys Rev E 84(1):016105(10)

    Article  Google Scholar 

  • Rubin F (1978) Enumerating all simple paths in a graph. IEEE Trans Circ Syst 25(8):641–642.

    MathSciNet  Article  MATH  Google Scholar 

  • Sakai K, Sun MT, Ku WS, Wu J, Alanazi FS (2016) An analysis of onion-based anonymous routing for delay tolerant networks. In: 2016 IEEE 36th international conference on distributed computing systems (ICDCS), IEEE, pp 609–618

  • Samarati P (2001) Protecting respondents identities in microdata release. IEEE Trans Knowl Data Eng 13(6):1010–1027.

    Article  Google Scholar 

  • Scott K, Burleigh S (2007) Bundle protocol specification. RFC 5050, Internet Request for Comments, RFC Editor, IETF.

  • Serjantov A, Danezis G (2002) Towards an information theoretic metric for anonymity. Privacy enhancing technologies. Springer, Berlin, Heidelberg, pp 41–53 (Lecture Notes in Computer Science)

    MATH  Google Scholar 

  • Sharma DK, Dhurandher SK, Agarwal D, Arora K (2019) krop: k-means clustering based routing protocol for opportunistic networks. J Ambient Intell Hum Comput 10(4):1289–1306

    Article  Google Scholar 

  • Shi C, Luo X, Traynor P, Ammar MH, Zegura EW (2012) Arden: anonymous networking in delay tolerant networks. Ad Hoc Netw 10(6):918–930

    Article  Google Scholar 

  • Song C, Qu Z, Blumm N (2010) Limits of predictability in human mobility. Science 327(5968):1018–1021

    MathSciNet  Article  MATH  Google Scholar 

  • Torra V (2017) Data Privacy: foundations, new developments and the big data challenge. Studies in big data. Springer, Berlin

    Book  Google Scholar 

  • Vakde G, Bibikar R, Le Z, Wright M (2011) Enpassant: anonymous routing for disruption-tolerant networks with applications in assistive environments. Secur Commun Netw 4(11):1243–1256

    Article  Google Scholar 

  • van den Hooff J, Lazar D, Zaharia M, Zeldovich N (2015) Vuvuzela: scalable private messaging resistant to traffic analysis. In: Proceedings of the 25th symposium on operating systems principles. ACM, SOSP’15, pp 137–152

  • Xuan BB, Ferreira A, Jarry A (2003) Computing shortest, fastest, and foremost journeys in dynamic networks. Int J Found Comput Sci 14(02):267–285

    MathSciNet  Article  MATH  Google Scholar 

Download references


This paper has been partially supported by Spanish Government under grants TIN2017-87211-R, RTI2018-095094-B-C22 “CONSENT”, and TIN2014-57364-C2-2-R “SMARTGLACIS”. Depeng Chen acknowledges the support from the China Scholarship Council, Grant No. 201606140138. C. Pérez-Solà was working at Universitat Rovira i Virgili when some of this work was done. Authors acknowledge Cristina Fernandez-Cordoba and Jordi Herrera-Joancomarti for insightful comments on some aspects related to the work described in this paper.

Author information

Authors and Affiliations


Corresponding author

Correspondence to G. Navarro-Arribas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Navarro-Arribas, G., Pérez-Solà, C. et al. Message anonymity on predictable opportunistic networks. J Ambient Intell Human Comput (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Opportunistic networking
  • Predictable opportunistic networks
  • Onion routing
  • Message anonymity