Skip to main content
Log in

Toward a user-centric classification scheme for extended reality paradigms

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

For several years, augmented and virtual reality technologies have attracted increasing interest in all areas. In the midst of this universe, the concept, already well known, of mixed reality has established itself as a distinct paradigm. However, and contrary to augmented and virtual realities, there is not a clear and standard definition of what it is exactly, what it is not and why it is different from the other paradigms. In this paper, we attempt to provide a new user-centered classification scheme to standardize the definition of virtual, augmented and mixed realities. First, a quick overview of existing taxonomies of augmented, virtual realities is made, then we present our user-centered classification which is based on three criteria we called 3iVClass (immersion, interaction, information). After that, a weighting system is proposed, the objective of this method is to give a simple way for anyone, expert or not, to quickly and simply characterize or define the best user experiences. Finally, to test our classification, we tried to characterize different user experiences through the study of two use cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Azuma RT (1997) A survey of augmented reality. Presence Teleoper Virtual Environ 6:355–385

    Article  Google Scholar 

  • Berg LP, Vance JM (2017) Industry use of virtual reality in product design and manufacturing: a survey. Virtual Reality 21(1):1–17

    Article  Google Scholar 

  • Billinghurst M, Kato H (1999) Collaborative mixed reality. In: Proceedings of the first international symposium on mixed reality, pp 261–284

    Chapter  Google Scholar 

  • Coates G (1992) Program from Invisible Site—a virtual sho, a multimedia performance work presented by George Coates Performance Works. San Francisco, CA, March 1992

  • Chalhoub J, Ayer SK (2018) Using mixed reality for electrical construction design communication. Autom Constr 86:1–10

    Article  Google Scholar 

  • Chen Y (2006) Olfactory display: development and application in virtual reality therapy. In: Artificial reality and telexistence–workshops, 2006. ICAT’06. 16th international conference. IEEE, pp 580–584

  • Dunn M, Pavan D, Ramirez P, Rava S, Atiqah S (2018) An automated method to extract three-dimensional position data using an infrared time-of-flight camera. MDPI Proc 2:502–507

    Google Scholar 

  • Durrant-Whyte H, Bailey T (2006) Simultaneous localization and mapping: part I. IEEE Robot Autom Mag 13:99–110

    Article  Google Scholar 

  • Ellis SR (1995) Virtual environments and environmental instruments. In: Simulated and virtual realities: elements of perception, pp 85–101

  • Erra U, Capece N (2017) Engineering an advanced geo-location augmented reality framework for smart mobile devices. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-017-0654-6

    Article  Google Scholar 

  • Fox D, Burgard W, Dellaert F, Thrun S (1999) Monte carlo localization: Efficient position estimation for mobile robots. In: AAAI/IAAI, p 2-2

  • Freeman KM, Thompson SF, Allely EB, Sobel AL, Stansfield SA, Pugh WM (2001) A virtual reality patient simulation system for teaching emergency response skills to US Navy medical providers. Prehosp Disaster Med 16:3–8

    Article  Google Scholar 

  • Ganapathi V, Plagemann C, Koller D, Thrun S (2010) Real time motion capture using a single time-of-flight camera. In: computer vision and pattern recognition (CVPR), 2010 IEEE conference. IEEE, pp 755–762

  • Gobbetti E, Scateni R (1998) Virtual reality: past, present, and future. In: Virtual environments in clinical psychology and neuroscience: methods and techniques in advanced patient-therapist interaction

  • Imbs P, Quemada B (1992) Trésor de la langue française: Présence vol 15. Editions du Centre national de la recherche scientifique

  • Jeanne F, Thouvenin I (2015) KIVA: informed virtual environment for technical gesture training. Paper presented at the 10èmes journées de l’Association Française de Réalité Virtuelle, Augmentée, Mixte et d’Interaction 3D, Latresne, France

  • Kinnebrew PT, Kipman A (2012) Mixed reality presentation. Google Patents

  • Kosslyn SM, Pylyshyn Z (1994) Image and brain: the resolution of the imagery debate. Nature 372:289

    Article  Google Scholar 

  • Kress BC, Cummings WJ (2017a) 11-1: invited paper: towards the ultimate mixed reality experience: HoloLens display architecture choices. In: SID symposium digest of technical papers, vol 1. Wiley Online Library, pp 127–131

  • Kress BC, Cummings WJ (2017b) Optical architecture of HoloLens mixed reality headset. In: Digital optical technologies 2017. International Society for Optics and Photonics, p 103350K

  • Lele A (2013) Virtual reality and its military utility Journal of Ambient Intelligence and Humanized. Computing 4:17–26

    Google Scholar 

  • Mann S, Nnlf SM (1994) Mediated reality

  • Meierhenrich UJ, Golebiowski J, Fernandez X, Cabrol-Bass D (2005) De la molécule à l’odeur. L’actualité chimique 289:29

    Google Scholar 

  • Merriam-Webster (2019a). https://www.merriam-webster.com

  • Merriam-Webster (2019b). https://www.merriam-webster.com

  • Milgram P, Kishino F (1994) A taxonomy of mixed reality visual displays. IEICE Trans Inf Syst 77:1321–1329

    Google Scholar 

  • Mujber TS, Szecsi T, Hashmi MS (2004) Virtual reality applications in manufacturing process simulation. J Mater Process Technol 155:1834–1838

    Article  Google Scholar 

  • Nowozin S, Adam A, Mazor S, Yair O (2018) Depth from time-of-flight using machine learning. Google Patents

  • Pan Z, Cheok AD, Yang H, Zhu J, Shi J (2006) Virtual reality and mixed reality for virtual learning environments. Comput Graph 30:20–28

    Article  Google Scholar 

  • Parveau M, Adda M (2018) 3iVClass: a new classification method for virtual, augmented and mixed realities. Proc Comput Sci 141:263–270

    Article  Google Scholar 

  • Rekimoto J, Nagao K (1995) The world through the computer: computer augmented interaction with real world environments. In: Proceedings of the 8th annual ACM symposium on user interface and software technology. ACM, pp 29–36

  • Ren A, Chen C, Luo Y (2008) Simulation of emergency evacuation in virtual reality. Tsinghua Sci Technol 13:674–680

    Article  Google Scholar 

  • Reznek M, Harter P, Krummel T (2002) Virtual reality and simulation: training the future emergency physician. Acad Emerg Med 9:78–87

    Article  Google Scholar 

  • Schuemie MJ, Van Der Straaten P, Krijn M, Van Der Mast CA (2001) Research on presence in virtual reality: a survey. CyberPsychol Behav 4:183–201

    Article  Google Scholar 

  • Sensorama simulator (1962) Google Patents

  • Shendarkar A, Vasudevan K, Lee S, Son Y-J (2006) Crowd simulation for emergency response using BDI agent based on virtual reality. In: Proceedings of the 38th conference on winter simulation. Winter simulation conference, pp 545–553

  • Srivastava AK, Kumar S, Zareapoor M (2018) Self-organized design of virtual reality simulator for identification and optimization of healthcare software components. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-018-1100-0

    Article  Google Scholar 

  • Starner T et al (1997) Augmented reality through wearable computing. Presence Teleoper Virtual Environ 6:386–398

    Article  Google Scholar 

  • Sutherland IE (1968) A head-mounted three dimensional display. In: Proceedings of the December 9–11, 1968, fall joint computer conference, part I. ACM, pp 757–764

  • Van der Meijden OA, Schijven MP (2009) The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review. Surg Endosc 23:1180–1190

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), 06351. Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), 06351.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Parveau.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parveau, M., Adda, M. Toward a user-centric classification scheme for extended reality paradigms. J Ambient Intell Human Comput 11, 2237–2249 (2020). https://doi.org/10.1007/s12652-019-01352-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-019-01352-9

Keywords

Navigation