Environmental assessment under uncertainty using Dempster–Shafer theory and Z-numbers

Abstract

Environmental assessment and decision making is complex leading to uncertainty due to multiple criteria involved with uncertain information. Uncertainty is an unavoidable and inevitable element of any environmental evaluation process. The published literatures rarely include the studies on uncertain data with variable fuzzy reliabilities. This research has proposed an environmental evaluation framework based on Dempster–Shafer theory and Z-numbers. Of which a new notion of the utility of fuzzy number is proposed to generate the basic probability assignment of Z-numbers. The framework can effectively aggregate uncertain data with different fuzzy reliabilities to obtain a comprehensive evaluation measure. The proposed model has been applied to two case studies to illustrate the proposed framework and show its effectiveness in environmental evaluations. Results show that the proposed framework can improve the previous methods with comparability considering the reliability of information using Z-numbers. The proposed method is more flexible comparing with previous work.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

(refer to Deng et al. (2004))

Fig. 7

(refer to Deng et al. (2004))

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Abiyev RH, Akkaya N, Gunsel I (2018) Control of omnidirectional robot using z-number-based fuzzy system. IEEE Trans Syst Man Cybern Syst 49(1):238–252. https://doi.org/10.1109/TSMC.2018.2834728

    Article  Google Scholar 

  2. Aboutorab H, Saberi M, Asadabadi MR, Hussain O, Chang E (2018) Zbwm: the z-number extension of best worst method and its application for supplier development. Expert Syst Appl 107:115–125. https://doi.org/10.1016/j.eswa.2018.04.015

    Article  Google Scholar 

  3. Aliev R, Memmedova K (2015) Application of z-number based modeling in psychological research. Comput Intell Neurosci 2015:1–7. https://doi.org/10.1155/2015/760403

    Article  Google Scholar 

  4. Aliev RA, Alizadeh AV, Huseynov OH (2015a) The arithmetic of discrete z-numbers. Inf Sci 290:134–155. https://doi.org/10.1016/j.ins.2014.08.024

    MathSciNet  Article  MATH  Google Scholar 

  5. Aliev RA, Alizadeh AV, Huseynov OH, Jabbarova K (2015b) Z-number-based linear programming. Int J Intell Syst 30(5):563–589. https://doi.org/10.1002/int.21709

    Article  Google Scholar 

  6. Aliev R, Huseynov O, Zeinalova L (2016) The arithmetic of continuous z-numbers. Inf Sci 373:441–460. https://doi.org/10.1016/j.ins.2016.08.078

    Article  MATH  Google Scholar 

  7. Aliev R, Pedrycz W, Huseynov O (2018) Hukuhara difference of z-numbers. Inf Sci 466:13–24. https://doi.org/10.1016/j.ins.2014.08.024

    MathSciNet  Article  Google Scholar 

  8. Azadeh A, Kokabi R (2016) Z-number dea: a new possibilistic dea in the context of z-numbers. Adv Eng Inf 30(3):604–617. https://doi.org/10.1016/j.aei.2016.07.005

    Article  Google Scholar 

  9. Bozdag E, Asan U, Soyer A, Serdarasan S (2015) Risk prioritization in failure mode and effects analysis using interval type-2 fuzzy sets. Expert Syst Appl 42(8):4000–4015. https://doi.org/10.1016/j.eswa.2015.01.015

    Article  Google Scholar 

  10. Chen SM (1996) New methods for subjective mental workload assessment and fuzzy risk analysis. Cybern Syst 27(5):449–472. https://doi.org/10.1080/019697296126417

    MathSciNet  Article  MATH  Google Scholar 

  11. Chen TY (2014) A promethee-based outranking method for multiple criteria decision analysis with interval type-2 fuzzy sets. Soft Comput 18(5):923–940. https://doi.org/10.1007/s00500-013-1109-4

    Article  MATH  Google Scholar 

  12. Chen SJ, Chen SM (2003) Fuzzy risk analysis based on similarity measures of generalized fuzzy numbers. IEEE Trans Fuzzy Syst 11(1):45–56. https://doi.org/10.1109/TFUZZ.2002.806316

    Article  Google Scholar 

  13. Chen L, Deng X (2018a) A modified method for evaluating sustainable transport solutions based on AHP and Dempster Shafer evidence theory. Appl Sci 8(4):563. https://doi.org/10.3390/app8040563

    Article  Google Scholar 

  14. Chen L, Deng Y (2018b) A new failure mode and effects analysis model using Dempster–Shafer evidence theory and grey relational projection method. Eng Appl Artif Intell 76:13–20. https://doi.org/10.1016/j.engappai.2018.08.010

    Article  Google Scholar 

  15. Chen TY, Ku TC (2008) Importance-assessing method with fuzzy number-valued fuzzy measures and discussions on TFNS and TRFNS. Int J Fuzzy Syst 10(2):92–103. https://doi.org/10.30000/IJFS.200806.0003

    MathSciNet  Article  Google Scholar 

  16. Chhipi-Shrestha G, Mori J, Hewage K, Sadiq R (2016) Clostridium difficile infection incidence prediction in hospitals (cdiiph): a predictive model based on decision tree and fuzzy techniques. Stoch Environ Res Risk Assess 31(2):417–430. https://doi.org/10.1007/s00477-016-1227-5

    Article  Google Scholar 

  17. Chou CC (2014) A new similarity measure of fuzzy numbers. J Intell Fuzzy Syst 26(1):287–294. https://doi.org/10.3233/IFS-120737

    MathSciNet  Article  MATH  Google Scholar 

  18. Dempster AP (1967) Upper and lower probabilities induced by a multi-valued mapping. Ann Math Stat 38:325–339. https://doi.org/10.1214/aoms/1177698950

    Article  MATH  Google Scholar 

  19. Deng X, Deng Y (2018) D-AHP method with different credibility of information. Soft Comput 23(2):683–691. https://doi.org/10.1007/s00500-017-2993-9

    Article  Google Scholar 

  20. Deng Y, Shi W, Du F, Liu Q (2004) A new similarity measure of generalized fuzzy numbers and its application to pattern recognition. Pattern Recognit Lett 25(8):875–883. https://doi.org/10.1016/j.patrec.2004.01.019

    Article  Google Scholar 

  21. Deng Y, Jiang W, Sadiq R (2011) Modeling contaminant intrusion in water distribution networks: a new similarity-based dst method. Expert Syst Appl 38(1):571–578. https://doi.org/10.1016/j.eswa.2010.07.004

    Article  Google Scholar 

  22. Dubberke ER, Yan Y, Reske KA, Butler AM, Doherty J, Pham V, Fraser VJ (2011) Development and validation of a Clostridium difficile infection risk prediction model. Infect Control Hosp Epidemiol 32(04):360–366. https://doi.org/10.1086/658944

    Article  Google Scholar 

  23. Dubois D, Fusco G, Prade H, Tettamanzi AG (2017a) Uncertain logical gates in possibilistic networks: theory and application to human geography. Int J Approx Reason 82:101–118. https://doi.org/10.1016/j.ijar.2016.11.009

    MathSciNet  Article  MATH  Google Scholar 

  24. Dubois D, Prade H, Rico A, Teheux B (2017b) Generalized qualitative sugeno integrals. Inf Sci 415:429–445. https://doi.org/10.1016/j.ins.2017.05.037

    MathSciNet  Article  Google Scholar 

  25. Dubois D, Prade H, Schockaert S (2017c) Generalized possibilistic logic: foundations and applications to qualitative reasoning about uncertainty. Artif Intell 252:139–174. https://doi.org/10.1016/j.artint.2017.08.001

    MathSciNet  Article  MATH  Google Scholar 

  26. Ezadi S, Allahviranloo T, Mohammadi S (2018) Two new methods for ranking of z-numbers based on sigmoid function and sign method. Int J Intell Syst 33(7):1476–1487. https://doi.org/10.1002/int.21987

    Article  Google Scholar 

  27. Fei L, Deng Y (2018) A new divergence measure for basic probability assignment and its applications in extremely uncertain environments. Int J Intell Syst. https://doi.org/10.1002/int.22066

    Article  Google Scholar 

  28. Fei L, Deng Y, Hu Y (2018a) DS-VIKOR: a new multi-criteria decision-making method for supplier selection. Int J Fuzzy Syst. https://doi.org/10.1007/s40815-018-0543-y

    Article  Google Scholar 

  29. Fei L, Wang H, Chen L, Deng Y (2018b) A new vector valued similarity measure for intuitionistic fuzzy sets based on owa operators. Iran J Fuzzy Syst. https://doi.org/10.22111/ijfs.2018.4302

    Article  MATH  Google Scholar 

  30. Han Y, Deng Y (2018) An enhanced fuzzy evidential DEMATEL method with its application to identify critical success factors. Soft Comput 22(15):5073–5090. https://doi.org/10.1007/s00500-018-3311-x

    Article  Google Scholar 

  31. Han Y, Deng Y (2018a) An evidential fractal ahp target recognition method. Def Sci J 68(4):367–373. https://doi.org/10.14429/dsj.68.11737

    Article  Google Scholar 

  32. Han Y, Deng Y (2018b) A hybrid intelligent model for assessment of critical success factors in high risk emergency system. J Ambient Intell Humaniz Comput 9(6):1933–1953. https://doi.org/10.1007/s12652-018-0882-4

    Article  Google Scholar 

  33. Han Y, Deng Y (2018c) A novel matrix game with payoffs of maxitive belief structure. Int J Intell Syst. https://doi.org/10.1002/int.22072

    Article  Google Scholar 

  34. Hg Peng, Jq Wang (2018) A multicriteria group decision-making method based on the normal cloud model with zadeh’s z-numbers. IEEE Trans Fuzzy Syst 26(6):3246–3260. https://doi.org/10.1109/TFUZZ.2018.2816909

    Article  Google Scholar 

  35. Huang Y, Huang G, Hu Q (2012) A fuzzy-parameterised stochastic modelling system for predicting multiphase subsurface transport under dual uncertainties. Civ Eng Environ Syst 29(2):91–105. https://doi.org/10.1080/10286608.2012.663355

    Article  Google Scholar 

  36. Jiang W, Xie C, Zhuang M, Shou Y, Tang Y (2016) Sensor data fusion with z-numbers and its application in fault diagnosis. Sensors 16(9):1509. https://doi.org/10.3390/s16091509

    Article  Google Scholar 

  37. Jiang W, Wei B, Liu X, Li X, Zheng H (2018) Intuitionistic fuzzy power aggregation operator based on entropy and its application in decision making. Int J Intell Syst 33(1):49–67. https://doi.org/10.1002/int.21939

    Article  Google Scholar 

  38. Kang B, Hu Y, Deng Y, Zhou D (2016) A new methodology of multicriteria decision-making in supplier selection based on z-numbers. Math Probl Eng 8475:987. https://doi.org/10.1155/2016/8475987

    MathSciNet  Article  MATH  Google Scholar 

  39. Kang B, Deng Y, Hewage K, Sadiq R (2018d) A method of measuring uncertainty for z-number. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2018.2868496

    Article  Google Scholar 

  40. Kang B, Chhipi-Shrestha G, Deng Y, Hewage K, Sadiq R (2018a) Stable strategies analysis based on the utility of Z-number in the evolutionary games. Appl Math Comput 324:202–217. https://doi.org/10.1016/j.amc.2017.12.006

    MathSciNet  Article  MATH  Google Scholar 

  41. Kang B, Chhipi-Shrestha G, Deng Y, Mori J, Hewage K, Sadiq R (2018b) Development of a predictive model for Clostridium difficile infection incidence in hospitals using gaussian mixture model and Dempster–Shafer theory. Stoch Environ Res Risk Assess 32(6):1743–1758. https://doi.org/10.1007/s00477-017-1459-z

    Article  Google Scholar 

  42. Kang B, Deng Y, Hewage K, Sadiq R (2018c) Generating Z-number based on OWA weights using maximum entropy. Int J Intell Syst 33(8):1745–1755. https://doi.org/10.1002/int.21995

    Article  Google Scholar 

  43. Kang B, Deng Y, Sadiq R (2018e) Total utility of z-number. Appl Intell 48(3):703–729. https://doi.org/10.1007/s10489-017-1001-5

    Article  Google Scholar 

  44. Katagiri H, Uno T, Kato K, Tsuda H, Tsubaki H (2013) Random fuzzy multi-objective linear programming: optimization of possibilistic value at risk (pvar). Expert Syst Appl 40(2):563–574. https://doi.org/10.1016/j.eswa.2012.07.064

    Article  Google Scholar 

  45. Kentel E, Aral MM (2007) Risk tolerance measure for decision-making in fuzzy analysis: a health risk assessment perspective. Stoch Environ Res Risk Assess 21(4):405–417. https://doi.org/10.1007/s00477-006-0073-2

    MathSciNet  Article  MATH  Google Scholar 

  46. Kirmeyer GJ, Martel K (2001) Pathogen intrusion into the distribution system. American Water Works Association, Washington, DC

    Google Scholar 

  47. Lee HS (2002) Optimal consensus of fuzzy opinions under group decision making environment. Fuzzy Set Syst 132(3):303–315. https://doi.org/10.1016/S0165-0114(02)00056-8

    MathSciNet  Article  MATH  Google Scholar 

  48. Li Z, Chen L (2019) A novel evidential FMEA method by integrating fuzzy belief structure and grey relational projection method. Eng Appl Artif Intell 77:136–147. https://doi.org/10.1016/j.engappai.2018.10.005

    Article  Google Scholar 

  49. Li Y, Deng Y (2018) Generalized ordered propositions fusion based on belief entropy. Int J Comput Commun Control 13(5):792–807. https://doi.org/10.15837/ijccc.2018.5.3244

    Article  Google Scholar 

  50. Li Y, Huang G (2011) Integrated modeling for optimal municipal solid waste management strategies under uncertainty. J Environ Eng 137(9):842–853. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000393

    Article  Google Scholar 

  51. Li HL, Huang GH, Zou Y (2008) An integrated fuzzy-stochastic modeling approach for assessing health-impact risk from air pollution. Stoch Environ Res Risk Assess 22(6):789–803. https://doi.org/10.1007/s00477-007-0187-1

    MathSciNet  Article  Google Scholar 

  52. Li M, Zhang Q, Deng Y (2018) Evidential identification of influential nodes in network of networks. Chaos Solition Fract 117:283–296. https://doi.org/10.1016/j.chaos.2018.04.033

    MathSciNet  Article  Google Scholar 

  53. Lindley TR (2001) A framework to protect water distribution systems against potential intrusions. Ph.D. thesis, University of Cincinnati

  54. Lu H, Huang G, Zeng G, Maqsood I, He L (2008) An inexact two-stage fuzzy-stochastic programming model for water resource management. Water Resour Manag 22(8):991–1016. https://doi.org/10.1007/s11269-007-9206-8

    Article  Google Scholar 

  55. Mo H, Deng Y (2018) A new MADA methodology based on D numbers. Int J Fuzzy Syst 20(8):2458–2469. https://doi.org/10.1007/s40815-018-0514-3

    MathSciNet  Article  Google Scholar 

  56. Mohsen O, Fereshteh N (2017) An extended vikor method based on entropy measure for the failure modes risk assessment—a case study of the geothermal power plant (gpp). Saf Sci 92:160–172. https://doi.org/10.1016/j.ssci.2016.10.006

    Article  Google Scholar 

  57. Pal SK, Banerjee R, Dutta S, Sarma SS (2013) An insight into the z-number approach to CWW. Fundam Inform 124(1–2):197–229. https://doi.org/10.3233/FI-2013-831

    MathSciNet  Article  Google Scholar 

  58. Pan L, Deng Y (2018) A new belief entropy to measure uncertainty of basic probability assignments based on belief function and plausibility function. Entropy 20(11):842. https://doi.org/10.3390/e20110842

    Article  Google Scholar 

  59. Patel P, Khorasani ES, Rahimi S (2016) Modeling and implementation of z-number. Soft Comput 20(4):1341–1364. https://doi.org/10.1007/s00500-015-1591-y

    Article  Google Scholar 

  60. Sabahi F (2018) Introducing validity into self-organizing fuzzy neural network applied to impedance force control. Fuzzy Set Syst 337:113–127. https://doi.org/10.1016/j.fss.2017.09.007

    MathSciNet  Article  MATH  Google Scholar 

  61. Sadiq R, Tesfamariam S (2009) Environmental decision-making under uncertainty using intuitionistic fuzzy analytic hierarchy process (if-AHP). Stoch Environ Res Risk Assess 23(1):75–91. https://doi.org/10.1007/s00477-007-0197-z

    MathSciNet  Article  MATH  Google Scholar 

  62. Sadiq R, Kleiner Y, Rajani B (2004) Aggregative risk analysis for water quality failure in distribution networks. J Water Supply Res Technol 53(4):241–261. https://doi.org/10.2166/aqua.2004.0020

    Article  Google Scholar 

  63. Sadiq R, Kleiner Y, Rajani B (2006) Estimating risk of contaminant intrusion in water distribution networks using Dempster–Shafer theory of evidence. Civ Eng Environ Syst 23(3):129–141. https://doi.org/10.1080/10286600600789276

    Article  Google Scholar 

  64. Sahrom NA, Dom RM (2015) A z-number extension of the hybrid analytic hierarchy process-fuzzy data envelopment analysis for risk assessment. In: IEEE 2015 international conference on research and education in mathematics (ICREM7), pp 19–24. https://doi.org/10.1109/ICREM.2015.7357019

  65. Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton

    Google Scholar 

  66. Shen KW, Wang JQ, Wang TL (2018) The arithmetic of multidimensional z-number. J Intell Fuzzy Syst. https://doi.org/10.3233/JIFS-18927

    Article  Google Scholar 

  67. Simor AE, Williams V, McGeer A, Raboud J, Larios O, Weiss K, Hirji Z, Laing F, Moore C, Gravel D (2013) Prevalence of colonization and infection with methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus and of Clostridium difficile infection in canadian hospitals. Prevalence 34(7):687–693. https://doi.org/10.1086/670998

    Article  Google Scholar 

  68. Siuta D, Markowski AS, Mannan MS (2013) Uncertainty techniques in liquefied natural gas (LNG) dispersion calculations. J Loss Prev Proc Process Ind 26(3):418–426. https://doi.org/10.1016/j.jlp.2012.07.020

    Article  Google Scholar 

  69. Smets P (2000) Data fusion in the transferable belief model. In: IEEE proceedings of the third international conference on information fusion, 2000. FUSION 2000, vol 1, pp PS21–PS33. https://doi.org/10.1109/IFIC.2000.862713

  70. Subagadis YH, Schütze N, Grundmann J (2016) A fuzzy-stochastic modeling approach for multiple criteria decision analysis of coupled groundwater-agricultural systems. Water Resour Manag 30(6):2075–2095. https://doi.org/10.1007/s11269-016-1270-5

    Article  Google Scholar 

  71. Tanner J, Khan D, Anthony D, Paton J (2009) Waterlow score to predict patients at risk of developing Clostridium difficile-associated disease. J Hosp Infect 71(3):239–244. https://doi.org/10.1016/j.jhin.2008.11.017

    Article  Google Scholar 

  72. Wang S, Huang G, Baetz BW (2015) An inexact probabilistic–possibilistic optimization framework for flood management in a hybrid uncertain environment. IEEE Trans Fuzzy Syst 23(4):897–908. https://doi.org/10.1109/TFUZZ.2014.2333094

    Article  Google Scholar 

  73. Wang C, Li Y, Huang G, Zhang J (2016a) A type-2 fuzzy interval programming approach for conjunctive use of surface water and groundwater under uncertainty. Inf Sci 340:209–227. https://doi.org/10.1016/j.ins.2016.01.026

    Article  Google Scholar 

  74. Wang LE, Liu HC, Quan MY (2016b) Evaluating the risk of failure modes with a hybrid mcdm model under interval-valued intuitionistic fuzzy environments. Comput Ind Eng 102:175–185. https://doi.org/10.1016/j.cie.2016.11.003

    Article  Google Scholar 

  75. Xiao F (2018a) A hybrid fuzzy soft sets decision making method in medical diagnosis. IEEE Access 6:25300–25312. https://doi.org/10.1109/ACCESS.2018.2820099

    Article  Google Scholar 

  76. Xiao F (2018b) An improved method for combining conflicting evidences based on the similarity measure and belief function entropy. Int J Fuzzy Syst 20(4):1256–1266. https://doi.org/10.1007/s40815-017-0436-5

    MathSciNet  Article  Google Scholar 

  77. Xiao F (2018c) A novel multi-criteria decision making method for assessing health-care waste treatment technologies based on D numbers. Eng Appl Artif Intell 71(2018):216–225. https://doi.org/10.1016/j.engappai.2018.03.002

    Article  Google Scholar 

  78. Xiao F (2019) Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy. Inf Fusion 46(2019):23–32. https://doi.org/10.1016/j.inffus.2018.04.003

    Article  Google Scholar 

  79. Yaakob AM, Gegov A (2016) Interactive topsis based group decision making methodology using z-numbers. Int J Comput Intell Syst 9(2):311–324. https://doi.org/10.1080/18756891.2016.1150003

    Article  Google Scholar 

  80. Yager RR (2012) On z-valuations using zadeh’s z-numbers. Int J Intell Syst 27(3):259–278. https://doi.org/10.1002/int.21521

    Article  Google Scholar 

  81. Yang H, Deng Y, Jones J (2018) Network division method based on cellular growth and physarum-inspired network adaptation. Int J Unconv Comput 13(6):477–491

    Google Scholar 

  82. Yin L, Deng Y (2018) Toward uncertainty of weighted networks: an entropy-based model. Phys A 508:176–186. https://doi.org/10.1016/j.physa.2018.05.067

    Article  Google Scholar 

  83. Zadeh LA (2011) A note on z-numbers. Inf Sci 181(14):2923–2932. https://doi.org/10.1016/j.ins.2011.02.022

    Article  MATH  Google Scholar 

  84. Zhang X (2016) Multicriteria pythagorean fuzzy decision analysis: a hierarchical qualiflex approach with the closeness index-based ranking methods. Inf Sci 330:104–124. https://doi.org/10.1016/j.ins.2015.10.012

    Article  Google Scholar 

  85. Zhang H, Deng Y (2018) Engine fault diagnosis based on sensor data fusion considering information quality and evidence theory. Adv Mech Eng 10(11):1–10. https://doi.org/10.1177/1687814018809184

    Article  Google Scholar 

  86. Zhang W, Deng Y (2018) Combining conflicting evidence using the DEMATEL method. Soft Comput. https://doi.org/10.1007/s00500-018-3455-8

    Article  Google Scholar 

  87. Zhou X, Hu Y, Deng Y, Chan FTS, Ishizaka A (2018) A DEMATEL-based completion method for incomplete pairwise comparison matrix in AHP. Ann Oper Res 271(2):1045–1066. https://doi.org/10.1007/s10479-018-2769-3

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by a startup fund from Northwest A&F University (no. Z109021812).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bingyi Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About the dataset used for model development

The data related to CDI were obtained from the Interior Health Authority (IHA), British Columbia. The database included the retrospective data of 22 hospitals spanned over 10 fiscal quarters from April 2012 to June 2014. The data were comprised of nursing staff to beds ratio (full-time); hand hygiene compliance; amount of Fluoroquinolone and Cephalosporins, and CDI cases. All cases of CDI were identified by Infection Prevention and Control, IHA. CDI incidence (output variable) was expressed in terms of number of CDI cases per 10,000 patient-days. For conveyance, the CDI related data of different hospitals of Quarter 2 of the fiscal year 2013 is given as an example in Table 12.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 10, 11, 12.

Table 10 TFNs defined for risk factors and CDI incidence class and the input data
Table 11 Total average precision of predicted classes
Table 12 Data used for model development (fiscal year 2013 quarter 2 as an example)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, B., Zhang, P., Gao, Z. et al. Environmental assessment under uncertainty using Dempster–Shafer theory and Z-numbers. J Ambient Intell Human Comput 11, 2041–2060 (2020). https://doi.org/10.1007/s12652-019-01228-y

Download citation

Keywords

  • Environmental assessment
  • Environmental risk
  • Dempster–Shafer theory
  • Z-number
  • Data fusion
  • Fuzzy reliability