Skip to main content
Log in

Mean amplitude spectrum based epileptic state classification for seizure prediction using convolutional neural networks

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

An increasing number of algorithms have been proposed for epileptic seizure prediction in recent years. But most of them are based on a partition of the electroencephalograph (EEG) signal of an epileptic patient into preictal, ictal (seizure), and interictal states. In this paper, we propose to further divide the preictal interval into multiple subintervals. Besides discriminating the seizure state from the preictal and interictal states, we also distinguish the preictal subintervals from each other. An epileptic state classification algorithm for epileptic EEG signals is then developed. The amplitude spectrums of EEG signals from 18 channels are firstly calculated and divided into 19 frequency subbands. The mean amplitude spectrum (MAS) on each of the 19 frequency subbands is then computed for each channel to form a MAS map of size 18\(\times\)19. Finally, the MAS map is fed to a convolutional neural network (CNN) for feature extraction and a support vector machine (SVM) is employed for the epileptic state classification. Experiments show that, for a three-subinterval partition of the preictal state, a classification accuracy of 86.25% has been achieved on the CHB-MIT database by the MAS-based epileptic state classification algorithm using CNN and SVM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The CHB-MIT EEG database, Available: https://epilepsy.uni-freiburg-seizure-prediction-project/eeg-database/

References

  • Acharya UR, Oh SL, Hagiwara Y (2017) Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med 100:270–280

    Article  PubMed  Google Scholar 

  • Achilles F, Tombari F, Belagiannis V (2018) Convolutional neural networks for real-time epileptic seizure detection. Compu MethodsBiomech Biomed Eng Imaging Vis 6:264–269

    Article  Google Scholar 

  • Alarcon G, Binnie CD, Elwes RDC (1995) Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy. Electroencephalogr Clin Neurophysiol 94:326–337

    Article  CAS  PubMed  Google Scholar 

  • Blanco S, Garay A, Coulombie D (2013) Comparison of frequency bands using spectral entropy for epileptic seizure prediction. ISRN Neurol 2013:287327. https://doi.org/10.1155/2013/287327

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao J, Zhang K, Yong H, Lai X, Chen B, Lin Z (2018) Extreme learning machine with affine transformation inputs in an activation function. IEEE Trans Neural Netw Lear Syst 99:1–15. https://doi.org/10.1109/TNNLS.2018.2877468

    Article  Google Scholar 

  • Celka P, Colditz P (2002) A computer-aided detection of EEG seizures in infants: a singular-spectrum approach and performance comparison. IEEE Trans Biomed Eng 49:455–462

    Article  PubMed  Google Scholar 

  • Elger CE (2001) Future trends in epileptology. Curr Opin Neurol 14:185–186

    Article  CAS  PubMed  Google Scholar 

  • Iasemidis LD, Sackellares JC (1996) Chaos theory and epilepsy. The Neuroscientist 2:118–126

    Article  Google Scholar 

  • Le Van Quyen M, Martinerie J, Navarro V (2001) Anticipation of epileptic seizures from standard EEG recordings. The Lancet 357:183–188

    Article  Google Scholar 

  • Litt B, Esteller R, Echauz J (2001) Seizure precursors may begin hours in advance of temporal lobe seizures: a report of five patients. Neuron 29:51–64

    Article  Google Scholar 

  • Martinerie J, Adam C, Le Van Quyen M (1998) Epileptic seizures can be anticipated by non-linear analysis. Nat Med 4(10):1173

    Article  CAS  PubMed  Google Scholar 

  • Mirowski PW, LeCun Y, Madhavan D (2008) Comparing SVM and convolutional networks for epileptic seizure prediction from intracranial EEG. In: Machine learning for signal processing, pp 244-249

  • Mormann F, Kreuz T, Rieke C (2005) On the predictability of epileptic seizures. Clin Neurophysiol 116:569–587

    Article  PubMed  Google Scholar 

  • Mormann F, Andrzejak RG, Elger CE (2006) Seizure prediction: the long and winding road. Brain 130:314–333

    Article  PubMed  Google Scholar 

  • Netoff T, Park Y, Parhi K (2009) Seizure prediction using cost-sensitive support vector machine. In: Engineering in medicine and biology society, pp 3322-3325

  • Nigam VP, Graupe D (2004) A neural-network-based detection of epilepsy. Neurol Res 26:55–60

    Article  PubMed  Google Scholar 

  • Park Y, Luo L, Parhi KK (2011) Seizure prediction with spectral power of EEG using cost-sensitive support vector machines. Epilepsia 52:1761–1770

    Article  PubMed  Google Scholar 

  • Perucca P, Dubeau F, Gotman J (2013) Intracranial electroencephalographic seizure-onset patterns: effect of underlying pathology. Brain 137:183–196

    Article  PubMed  Google Scholar 

  • Skjei KL, Dlugos DJ (2011) The evaluation of treatment-resistant epilepsy. Semin Pediatr Neurol 18:150–170

    Article  PubMed  Google Scholar 

  • Song J, Zhang R (2017) Application of extreme learning machine to epileptic seizure detection based on lagged Poinca\(\acute{r}\)e plots. Multidimens Syst Signal Process 28(3):945–959

    Article  Google Scholar 

  • Srinivasan V, Eswaran C, Sriraam N (2005) Artificial neural network based epileptic detection using time-domain and frequency-domain features. J Med Syst 29:647–660

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan V, Eswaran C, Sriraam N (2007) Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans inf Technol Biomed 11:288–295

    Article  PubMed  Google Scholar 

  • Truong ND, Nguyen AD, Kuhlmann L (2017) A generalised seizure prediction with convolutional neural networks for intracranial and scalp electroencephalogram data analysis. arXiv preprint arXiv:1707.01976v2

  • Wilden JA, Cohen-Gadol AA (2012) Evaluation of first nonfebrile seizures. Am Family Phys 86(4)

  • Williamson JR, Bliss DW, Browne DW (2011) Epileptic seizure prediction using the spatiotemporal correlation structure of intracranial EEG. In: Acoustics, speech and signal processing (ICASSP), pp 665-668

  • Witte H, Iasemidis LD, Litt B (2003) Special issue on epileptic seizure prediction. IEEE Trans Biomed Eng 50:537–539

    Article  Google Scholar 

  • Zhang Z, Parhi KK (2016) Low-complexity seizure prediction from iEEG/sEEG using spectral power and ratios of spectral power. IEEE Trans Biomed Circ Syst 10:693–706

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China under Grant 61503104, and supported in part by the K. C. Wong Education Foundation and DAAD, the Zhejiang basic public welfare research program LGF18F010007, and the special fund project of information development in Shanghai: XX-XXFZ-02-18-2862.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuwen Cao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Cao, J., Lai, X. et al. Mean amplitude spectrum based epileptic state classification for seizure prediction using convolutional neural networks. J Ambient Intell Human Comput 14, 15485–15495 (2023). https://doi.org/10.1007/s12652-019-01220-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-019-01220-6

Keywords

Navigation