Efficient visual tracking using multi-feature regularized robust sparse coding and quantum particle filter based localization

  • Prajna Parimita DashEmail author
  • Dipti Patra
Original Research


Visual object tracking is a challenging task in the field of computer vision, due to many constraints like scene variation, occlusion, cluttered background and higher data size. The sparse representation tool of the compressive sensing theory, turns out to be an effective way to implement the object tracking algorithm with less computational load and at a faster speed. In this paper, we have proposed an effective object tracking framework by using a regularized robust sparse coding (RRSC) for representing the multi-feature templates of the candidate objects. Moreover, an efficient Quantum Particle Filter (QPF) based Bayesian state estimation for tracking is also proposed for localizing the target object in the subsequent frames. The RRSC assures robustness to occlusion and noise, while the QPF successfully deals with the abrupt motion of the object. The Local Binary Pattern (LBP) feature and the Ohta color feature, reconciled in appearance modelling enhance the discriminant description. Both subjective as well as objective evaluation of the proposed tracking method is carried out for validating its efficacy in comparison to the other state-of-the-art methods. The evaluation is executed on different publicly available data sets, which illustrates the superiority of the proposed method.


Object tracking Robust sparse coding Mean-shift tracking Quantum Particle Filter 


  1. Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: Computer vision and pattern recognition, 2006 IEEE Computer Society Conference on, vol 1. IEEE, pp 798–805Google Scholar
  2. Ahn H, Lee Y-H (2016) Performance analysis of object recognition and tracking for the use of surveillance system. J Ambient Intell Humaniz Comput 7(5):673–679CrossRefGoogle Scholar
  3. Babenko B, Yang M-H, Belongie S (2009) Visual tracking with online multiple instance learning. In: Computer Vision and Pattern Recognition. CVPR 2009. IEEE Conference on. IEEE, pp 983–990Google Scholar
  4. Candes EJ, Romberg JK, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math 59(8):1207–1223MathSciNetCrossRefzbMATHGoogle Scholar
  5. Cazzanti L, Gupta MR, Koppal AJ (2008) Generative models for similarity-based classification. Pattern Recogn 41(7):2289–2297CrossRefzbMATHGoogle Scholar
  6. Chase BA, Geremia J (2009) Single-shot parameter estimation via continuous quantum measurement. Phys Rev A 79(2):022314CrossRefGoogle Scholar
  7. Davenport MA, Duarte MF, Eldar YC, Kutyniok G (2011) Introduction to compressed sensing. Preprint 93(1):2Google Scholar
  8. Davies E (1969) Quantum stochastic processes. Commun Math Phys 15(4):277–304CrossRefGoogle Scholar
  9. Donoho DL (2006) For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6):797–829MathSciNetCrossRefzbMATHGoogle Scholar
  10. Donoho DL, Huo X (2001) Uncertainty principles and ideal atomic decomposition. IEEE Trans Inf Theory 47(7):2845–2862MathSciNetCrossRefzbMATHGoogle Scholar
  11. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745MathSciNetCrossRefGoogle Scholar
  12. Gao S, Tsang IW-H, Chia L-T, Zhao P (2010) Local features are not lonely–laplacian sparse coding for image classification. In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, pp 3555–3561Google Scholar
  13. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293(5539):2425–2430 Google Scholar
  14. He Z, Yi S, Cheung Y-M, You X, Tang YY (2017) Robust object tracking via key patch sparse representation. IEEE Trans Cybern 47(2):354–364Google Scholar
  15. Hongwei H, Ma B, Shen J (2017) Manifold regularized correlation object tracking. IEEE Trans Neural Netw Learn Syst 99:1–10Google Scholar
  16. Hu W, Li W, Zhang X, Maybank S (2015) Single and multiple object tracking using a multi-feature joint sparse representation. IEEE Trans Pattern Anal Mach Intell 37(4):816–833CrossRefGoogle Scholar
  17. Huber PJ (1973) Robust regression: asymptotics, conjectures and Monte Carlo. Ann Stat 1(5):799–821MathSciNetCrossRefzbMATHGoogle Scholar
  18. Jepson AD, Fleet DJ, El-Maraghi TF (2003) Robust online appearance models for visual tracking. IEEE Trans Pattern Anal Mach Intell 25(10):1296–1311CrossRefGoogle Scholar
  19. Kalal Z, Matas J, Mikolajczyk K (2010) Pn learning: Bootstrapping binary classifiers by structural constraints. In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, pp 49–56Google Scholar
  20. Kristan M, Kovacic S, Leonardis A, Pers J (2010) A two-stage dynamic model for visual tracking. IEEE Trans Syst Man Cybern Part B (Cybern) 40(6):1505–1520CrossRefzbMATHGoogle Scholar
  21. Kwon J, Lee KM (2010) Visual tracking decomposition. Computer Vision and Pattern Recognition (CVPR), IEEE Conference, pp 1269–1276Google Scholar
  22. Li A, Jing Z, Hu S (2007) Robust observation model for visual tracking in particle filter. AEU Int J Electron Commun 61(3):186–194CrossRefGoogle Scholar
  23. Li X, He Z, You X, Chen CP (2014) A novel joint tracker based on occlusion detection. Knowl Based Syst 71:409–418CrossRefGoogle Scholar
  24. Li X, Liu Q, He Z, Wang H, Zhang C, Chen W-S (2016) A multi-view model for visual tracking via correlation filters. Knowl Based Syst 113:88–99CrossRefGoogle Scholar
  25. Liu B, Yang L, Huang J, Meer P, Gong L, Kulikowski C (2010) Robust and fast collaborative tracking with two stage sparse optimization. European conference on computer vision. Springer, New York, pp 624–637Google Scholar
  26. Liu Q, Ma X, Ou W, Zhou Q (2017) Visual object tracking with online sample selection via lasso regularization. Signal Image Video Process 11(5):881–888CrossRefGoogle Scholar
  27. Liu Q, Zhao X, Hou Z (2014) Survey of single-target visual tracking methods based on online learning. IET Comput Vision 8(5):419–428CrossRefGoogle Scholar
  28. Ma B, Hu H, Shen J, Zhang Y, Porikli F (2015) Linearization to nonlinear learning for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp 4400–4407Google Scholar
  29. Ma B, Huang L, Shen J, Shao L (2016a) Discriminative tracking using tensor pooling. IEEE Trans Cybern 46(11):2411–2422CrossRefGoogle Scholar
  30. Ma B, Huang L, Shen J, Shao L, Yang M-H, Porikli F (2016b) Visual tracking under motion blur. IEEE Trans Image Process 25(12):5867–5876MathSciNetCrossRefGoogle Scholar
  31. Mairal J, Elad M, Sapiro G (2008) Sparse representation for color image restoration. IEEE Trans Image Process 17(1):53–69MathSciNetCrossRefzbMATHGoogle Scholar
  32. Manjunath BS, Ohm J-R, Vasudevan VV, Yamada A (2001) Color and texture descriptors. IEEE Trans Circuits Syst Video Technol 11(6):703–715CrossRefGoogle Scholar
  33. Mazzeo PL, Spagnolo P, Leo M, Carcagnì P, Del Coco M, Distante C (2017) Dense descriptor for visual tracking and robust update model strategy. J Ambient Intell Humaniz Comput:1–11Google Scholar
  34. Mei X, Ling H (2009) Robust visual tracking using 1 minimization. In: Computer Vision, 2009 IEEE 12th International Conference on. IEEE, pp 1436–1443Google Scholar
  35. Mei X, Ling H (2011) Robust visual tracking and vehicle classification via sparse representation. IEEE Trans Pattern Anal Mach Intell 33(11):2259–2272CrossRefGoogle Scholar
  36. Ou W, You X, Cheung Y-M, Peng Q, Gong M, Jiang X (2012) Structured sparse coding for image representation based on l 1-graph. In: Pattern Recognition (ICPR), 2012 21st International Conference on. IEEE, pp 3220–3223Google Scholar
  37. Ou W, You X, Tao D, Zhang P, Tang Y, Zhu Z (2014) Robust face recognition via occlusion dictionary learning. Pattern Recogn 47(4):1559–1572CrossRefGoogle Scholar
  38. Ou W, Yuan D, Liu Q, Cao Y (2017) Object tracking based on online representative sample selection via non-negative least square. Multimed Tools Appl.
  39. Ramirez I, Sapiro G (2009) Sparse modelling with universal priors and learned incoherent dictionaries. Technical report, DTIC DocumentGoogle Scholar
  40. Ross DA, Lim J, Lin R-S, Yang M-H (2008) Incremental learning for robust visual tracking. Int J Comput Vision 77(1–3):125–141CrossRefGoogle Scholar
  41. Sathyanarayana S, Satzoda RK, Sathyanarayana S, Thambipillai S (2015) Vision-based patient monitoring: a comprehensive review of algorithms and technologies. J Ambient Intell Humanized Comput 1–27.
  42. Sukumaran AN, Sankararajan R, Swaminathan M (2017) Compressed sensing based foreground detection vector for object detection in wireless visual sensor networks. AEU Int J Electron Commun 72:216–224CrossRefGoogle Scholar
  43. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc Ser B 58(1):267–288MathSciNetzbMATHGoogle Scholar
  44. van Handel R, Stockton JK, Mabuchi H (2005) Modelling and feedback control design for quantum state preparation. J Opt B Quantum Semiclassical Opt 7(10):S179MathSciNetCrossRefGoogle Scholar
  45. Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image classification. In: Computer Vision and Pattern Recognition (CVPR), IEEE Conference, pp 3360–3367Google Scholar
  46. Wang Q, Chen F, Xu W, Yang M-H (2012) Online discriminative object tracking with local sparse representation. In: Applications of Computer Vision (WACV), IEEE Workshop, pp 425–432Google Scholar
  47. Wang D, Lu H, Yang M-H (2013) Online object tracking with sparse prototypes. IEEE Trans Image Process 22(1):314–325MathSciNetCrossRefzbMATHGoogle Scholar
  48. Wei Q, Xiong Z, Li C, Ouyang Y, Sheng H (2011) A robust approach for multiple vehicles tracking using layered particle filter. AEU Int J Electron Commun 65(7):609–618CrossRefGoogle Scholar
  49. Wright J, Ma Y (2010) Dense error correction via l1-minimization. IEEE Trans Inf Theory 56(7):3540–3560CrossRefzbMATHGoogle Scholar
  50. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRefGoogle Scholar
  51. Xingping Dong JS, Yu D (2017) Occlusion-aware real-time object tracking. IEEE Trans Multimed 19(4):763–771CrossRefGoogle Scholar
  52. Yang M, Zhang L (2010) Gabor feature based sparse representation for face recognition with gabor occlusion dictionary. European conference on computer vision. Springer, New York, pp 448–461Google Scholar
  53. Yang M, Zhang L, Yang J, Zhang D (2013) Regularized robust coding for face recognition. IEEE Trans Image Process 22(5):1753–1766MathSciNetCrossRefzbMATHGoogle Scholar
  54. Yu S, You X, Jiang X, Ou W, Zhu Z, Zhao Y, Chen CP, Tang Y (2015) Generalized kernel normalized mixed-norm algorithm: analysis and simulations. International Conference on Neural Information Processing. Springer, pp 61–70CrossRefGoogle Scholar
  55. Yuan X-T, Liu X, Yan S (2012) Visual classification with multitask joint sparse representation. IEEE Trans Image Process 21(10):4349–4360MathSciNetCrossRefzbMATHGoogle Scholar
  56. Zhang Z, Xu Y, Yang J, Li X, Zhang D (2015) A survey of sparse representation: algorithms and applications. IEEE Access 3:490–530CrossRefGoogle Scholar
  57. Zhang T, Bibi A, Ghanem B (2016) In defense of sparse tracking: Circulant sparse tracker. In: Proceedings of the computer vision and pattern recognition, IEEE conference, pp 3880–3888Google Scholar
  58. Zhao P, Yu B (2006) On model selection consistency of lasso. J Mach Learn Res 7:2541–2563MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational Institute of TechnologyRourkelaIndia
  2. 2.Department of Electronics and Communication EngineeringBirla Institute of TechnologyRanchiIndia

Personalised recommendations