Skip to main content

Heart rate variability as a predictive biomarker of thermal comfort

Abstract

Thermal comfort is an assessment of one’s satisfaction with the surroundings; yet, most mechanisms that are used to provide thermal comfort are based on approaches that preclude physiological, psychological and personal psychophysics that are precursors to thermal comfort. This leads to many people feeling either cold or hot in an environment that was supposed to be thermally comfortable to most users. To address this problem, this paper proposes to use heart rate variability (HRV) as an alternative indicator of thermal comfort status. Since HRV is linked to homeostasis, we conjectured that people’s thermal comfort could be more accurately estimated based on their heart rate variability (HRV). To test our hypothesis, we analyzed statistical, spectral, and nonlinear HRV indices of 17 human subjects doing light office work in a cold, a neutral, and a hot environment. The resulting HRV indices were used as inputs to machine learning classification algorithms. We observed that HRV is distinctively different depending on the thermal environment and that it is possible to reliably predict each subject’s thermal state (cold, neutral, and hot) with up to a 93.7% accuracy. The result of this study suggests that it could be possible to design automatic real-time thermal comfort controllers based on people’s HRV.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri JS (2006) Heart rate variability: a review. Med Biol Eng Comput 44(12):1031–1031. doi:10.1007/s11517-006-0119-0 (ISSN 01400118)

    Article  Google Scholar 

  • Almeida AC, Machado AF, Albuquerque MC, Netto LM, Vanderlei FM, Vanderlei LCM, Junior JN, Pastre CM (2016) The effects of cold water immersion with different dosages (duration and temperature variations) on heart rate variability post-exercise recovery: a randomized controlled trial. J Sci Med Sport 19(8):676–681. doi:10.1016/j.jsams.2015.10.003 (ISSN 14402440)

    Article  Google Scholar 

  • ASHRAE (2013) ASHRAE/ANSI standard 55-2013 thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, GA

  • Berntson GG, Bigger JT, Eckberg DL, Grossman P, Kaufmann PG, Malik M, Nagaraja HN, Porges SW, Saul JP, Stone PH, van der Molen MW (1997) Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34(6):623–648

    Article  Google Scholar 

  • Billman GE (2013) The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol. doi:10.3389/fphys.2013.00026 (ISSN 1664042X)

  • Bolanos M, Nazeran H, Haltiwanger E (2006) Comparison of heart rate variability signal features derived from electrocardiography and photoplethysmography in healthy individuals. Annu Int Conf IEEE Eng Med Biol Proc. doi:10.1109/IEMBS.2006.260607 (ISSN 05891019)

  • Brager GS, De Dear RJ (1998) Thermal adaptation in the built environment: a literature review. Energy Build 27(1):83–96. doi:10.1016/s0378-7788(97)00053-4 (ISSN 03787788)

    Article  Google Scholar 

  • Brager G, Zhang H, Arens E (2015) Evolving opportunities for providing thermal comfort. Build Res Inf 43(3):274–287

    Article  Google Scholar 

  • Brennan M, Palaniswami M, Kamen P (2001) Do existing measures of Poincar?? plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng 48(11):1342–1347. doi:10.1109/10.959330 (ISSN 00189294)

    Article  Google Scholar 

  • Choi JH (2010) CoBi: bio-sensing building mechanical system controls for sustainably enhancing individual thermal comfort. PhD Dissertation. Carnegie Mellon University. Retrieved from http://repository.cmu.edu/dissertations/33. Accessed 20 Aug 2017

  • Choi JH, Loftness V, Lee DW (2012) Investigation of the possibility of the use of heart rate as a human factor for thermal sensation models. Build Environ 50:165–175

    Article  Google Scholar 

  • Croitoru C, Nastase I, Bode F, Meslem A, Dogeanu A (2015) Thermal comfort models for indoor spaces and vehicles—current capabilities and future perspectives. Renew Sustain Energy Rev 44:304–318. doi:10.1016/j.rser.2014.10.105 (ISSN 13640321)

    Article  Google Scholar 

  • de Dear RJ, Akimoto I, Arens EA, Brager G, Candido C, Cheong KWD, Li B, Nishihara N, Sekhar SC, Tanabe S, Toftum J, Zhang H, Zhu Y (2013) Progress in thermal comfort research over the last twenty years. Indoor Air 23(6):442–461 (ISSN 09056947)

    Article  Google Scholar 

  • de Dear R (2009) The theory of thermal comfort in naturally ventilated indoor environments—the pleasure principle. Int J Vent 8(3):243–250. doi:10.1080/14733315.2009.11683849 (ISSN 1473-3315)

    Article  Google Scholar 

  • de Dear R (2011) Revisiting an old hypothesis of human thermal perception: alliesthesia. Build Res Inf 39(2):108–117. doi:10.1080/09613218.2011.552269 (ISSN 0961-3218)

    Article  Google Scholar 

  • de Dear R, Brager GS (1998) Developing an adaptive model of thermal comfort and preference. ASHRAE Trans (ISSN 00012505)

  • Echeverría JC, Woolfson MS, Crowe JA, Hayes-Gill BR, Croaker GDH, Vyas H (2003) Interpretation of heart rate variability via detrended fluctuation analysis and alphabeta filter. Chaos 13(2):467–475. doi:10.1063/1.1562051 (ISSN 1054-1500)

    MathSciNet  Article  Google Scholar 

  • Fanger PO (1970) Thermal comfort: analysis and applications in environmental engineering. Danish Technical Press, Vanlose (Republished by McGraw-Hill, New York, 1973)

    Google Scholar 

  • Fleisher LA, Frank SM, Sessler DI, Cheng C, Matsukawa T, Vannier CA (1996) Thermoregulation and heart rate variability. Clin Sci Lond 90(2):97–103. doi:10.1042/cs0900097 (ISSN 0143-5221)

    Article  Google Scholar 

  • Fonseca DS, Affonseca Netto AD, Ferreira RB, Miranda De Sa AMFL (2013) Lomb-scargle periodogram applied to heart rate variability study. ISSNIP Biosignals Biorobot Conf BRC 2:8–11. doi:10.1109/BRC.2013.6487524 (ISSN 23267771)

    Article  Google Scholar 

  • Fountain M, Brager G, De Dear R (1996) Expectations of indoor climate control. Energy Build 24(3):179–182. doi:10.1016/S0378-7788(96)00988-7 (ISSN 03787788)

    Article  Google Scholar 

  • Hammel HT, Pierce JB (1968) Regulation of internal body temperature. Annu Rev Physiol 30(1):641–710. doi:10.1146/annurev.ph.30.030168.003233 (ISSN 0066-4278)

    Article  Google Scholar 

  • Hardstone R, Poil SS, Schiavone G, Jansen R, Nikulin VV, Mansvelder HD, Linkenkaer-Hansen K (2012) Detrended fluctuation analysis: a scale-free view on neuronal oscillations. Front Physiol 3:1–13. doi:10.3389/fphys.2012.00450 (ISSN 1664042X)

    Article  Google Scholar 

  • Hoyt T, Arens E, Zhang H (2014) Extending air temperature setpoints: simulated energy savings and design considerations for new and retrofit buildings. Build Environ 88:89–96. doi:10.1016/j.buildenv.2014.09.010 (ISSN 03601323)

    Article  Google Scholar 

  • Huizenga C, Abbaszadeh S, Zagreus L, Arens E (2006) Air quality and thermal comfort in office buildings: results of a large indoor environmental quality survey. Proc Heal Build III:393–397

    Google Scholar 

  • Humeau-Heurtier A (2015) The multiscale entropy algorithm and its variants: a review. Entropy 17(5):3110–3123. doi:10.3390/e17053110. http://www.mdpi.com/1099-4300/17/5/3110/ (ISSN 1099-4300)

    MathSciNet  Article  Google Scholar 

  • Humphreys MA, Hancock M (2007) Do people like to feel ’neutral’?. Exploring the variation of the desired thermal sensation on the ASHRAE scale. Energy Build 39(7):867–874. doi:10.1016/j.enbuild.2007.02.014 (ISSN 03787788)

    Article  Google Scholar 

  • International Facility Management Association (2009) Temperature wars: savings vs. comfort. Technical report. International Facility Management Association, Houston

  • Jones BW (2002) Capabilities and limitations of thermal models for use in thermal comfort standards. Energy Build 34(6):653–659. doi:10.1016/S0378-7788(02)00016-6 (ISSN 03787788)

    Article  Google Scholar 

  • Karjalainen S (2012) Thermal comfort and gender: a literature review. Indoor Air 22(2):96–109. doi:10.1111/j.1600-0668.2011.00747.x (ISSN 09056947)

    Article  Google Scholar 

  • Karjalainen S (2007) Gender differences in thermal comfort and use of thermostats in everyday thermal environments. Build Environ 42(4):1594–1603. doi:10.1016/j.buildenv.2006.01.009 (ISSN 03601323)

    Article  Google Scholar 

  • Kotsiantis SB, Zaharakis ID, Pintelas PE (2006) Machine learning: a review of classification and combining techniques. Artif Intell Rev 26(3):159–190. doi:10.1007/s10462-007-9052-3 (ISSN 02692821)

    Article  Google Scholar 

  • Laguna P, Moody GB, Mark RG (1998) Power spectral density of unevenly sampled data by least-square analysis: performance and application to heart rate signals. IEEE Trans Biomed Eng 45(6):698–715. doi:10.1109/10.678605 (ISSN 00189294)

    Article  Google Scholar 

  • Lake DE, Richman JS, Griffin MP, Moorman JR (2002) Sample entropy analysis of neonatal heart rate variability. Am J Physiol Regul Integr Comp Physiol 283(3):R789–R797. doi:10.1152/ajpregu.00069.2002 (ISSN 0363-6119)

    Article  Google Scholar 

  • Lin TP, de Dear R, Hwang RL (2011) Effect of thermal adaptation on seasonal outdoor thermal comfort. Int J Climatol 31(2):302–312. doi:10.1002/joc.2120 (ISSN 08998418)

    Article  Google Scholar 

  • Liu W, Lian Z, Liu Y (2008) Heart rate variability at different thermal comfort levels. Eur J Appl Physiol 103(3):361–366. doi:10.1007/s00421-008-0718-6 (ISSN 14396319)

    Article  Google Scholar 

  • Lomb NR (1976) Least-squares frequency analysis of unequally spaced data. Astrophys Space Sci 39(2):447–462. doi:10.1007/BF00648343 (ISSN 0004640X)

    Article  Google Scholar 

  • Maestri R, Pinna GD, Porta A, Balocchi R, Sassi R, Signorini MG, Dudziak M, Raczak G (2007) Assessing nonlinear properties of heart rate variability from short-term recordings: are these measurements reliable? Physiol Meas 28(9):1067–1077. doi:10.1088/0967-3334/28/9/008 (ISSN 0967-3334)

    Article  Google Scholar 

  • Mahdavi A, Kumar S (1996) Implications of indoor climate control for comfort, energy and environment. Energy Build 24(3):167–177. doi:10.1016/S0378-7788(96)00975-9 (ISSN 03787788)

    Article  Google Scholar 

  • Meinshausen N, Bühlmann P (2010) Stability selection. J R Stat Soc Ser B Stat Methodol 72(4):417–473. doi:10.1111/j.1467-9868.2010.00740.x (ISSN 13697412)

    MathSciNet  Article  Google Scholar 

  • Milicević G (2005) Low to high frequency ratio of heart rate variability spectra fails to describe sympatho-vagal balance in cardiac patients. Coll Antropol 29(1):295–300 (ISSN 0350-6134)

    Google Scholar 

  • Moody GB (1993) Spectral analysis of heart rate without resampling. Comput Cardiol Proc 1:7–10

    Google Scholar 

  • Nastase I, Croitoru C, Lungu C (2016) A questioning of the thermal sensation vote index based on questionnaire survey for real working environments. Energy Proced 85:366–374 (ISSN 18766102)

    Article  Google Scholar 

  • Natsume K, Ogawa T, Sugenoya J, Ohnishi N, Imai K (1992) Preferred ambient temperature for old and young men in summer and winter. Int J Biometeorol 36(1):1–4. doi:10.1007/BF01208726 (ISSN 0020-7128)

    Article  Google Scholar 

  • Nicol JF, Roaf S (2017) Rethinking thermal comfort. Build Res Inf Table 1:1–5. doi:10.1080/09613218.2017.1301698 (ISSN 0961-3218)

    Article  Google Scholar 

  • Fanger PO (2001) Human requirements in future air-conditioned environments. Int J Refrig 24(2):148–153. doi:10.1016/S0140-7007(00)00011-6 (ISSN 01407007)

    Article  Google Scholar 

  • Pan J, Tompkins WJ (1985) A real-time QRS detection algorithm. Biomed Eng IEEE Trans 32(3):230–236. doi:10.1109/TBME.1985.325532

    Article  Google Scholar 

  • Parkinson T, de Dear R (2015) Thermal pleasure in built environments: physiology of alliesthesia. Build Res Inf 43(3):288–301. doi:10.1080/09613218.2016.1140932 (ISSN 0961-3218)

    Article  Google Scholar 

  • Parkinson T, de Dear R (2016) Thermal pleasure in built environments: spatial alliesthesia from contact heating. Build Res Inf 44(3):248–262. doi:10.1080/09613218.2016.1140932 (ISSN 0961-3218)

    Article  Google Scholar 

  • Parkinson T, de Dear R (2017) Thermal pleasure in built environments: spatial alliesthesia from air movement. Build Res Inf 45(3):320–335. doi:10.1080/09613218.2016.1140932 (ISSN 0961-3218)

    Article  Google Scholar 

  • Parkinson T, de Dear R, Candido C (2016) Thermal pleasure in built environments: alliesthesia in different thermoregulatory zones. Build Res Inf 44(1):20–33. doi:10.1080/09613218.2015.1059653 (ISSN 0961-3218)

    Article  Google Scholar 

  • Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos Interdiscip J Nonlinear Sci 5(1):82–87

    Article  Google Scholar 

  • Penzel T, Kantelhardt JW, Grote L, Peter JH, Bunde A (2003) Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans Biomed Eng 50(10):1143–1151. doi:10.1109/TBME.2003.817636 (ISSN 0018-9294)

    Article  Google Scholar 

  • Piskorski J, Guzik P (2007) Geometry of the Poincaré plot of RR intervals and its asymmetry in healthy adults. Physiol Meas 28:287–300. doi:10.1088/0967-3334/28/3/005 (ISSN 0967-3334)

    Article  Google Scholar 

  • Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6):H2039–H2049. doi:10.1103/PhysRevA.29.975 (ISSN 0363-6135)

    Article  Google Scholar 

  • Riganello F, Garbarino S, Sannita WG (2012) Heart rate variability, homeostasis, and brain function. J Psychophysiol 26(4):178–203. doi:10.1027/0269-8803/a000080 (ISSN 0269-8803)

    Article  Google Scholar 

  • Robinson BF, Epstein SE, Beiser GD, Braunwald E (1966) Control of heart rate by the autonomic nervous system. Studies in man on the interrelation between baroreceptor mechanisms and exercise. Circ Res 19(2):400–411 (ISSN 0009-7330)

    Article  Google Scholar 

  • Rodriguez E, Echeverria JC, Alvarez-Ramirez J (2007) Detrended fluctuation analysis of heart intrabeat dynamics. Phys A Stat Mech Appl 384(2):429–438. doi:10.1016/j.physa.2007.05.022 (ISSN 03784371)

    Article  Google Scholar 

  • Sassi R, Cerutti S, Lombardi F, Malik M, Huikuri HV, Peng CK, Schmidt G, Yamamoto Y (2015) Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace 17(9):1341–1353. doi:10.1093/europace/euv015 (ISSN 15322092)

    Article  Google Scholar 

  • Schiavon S, Hoyt T, Piccioli A (2014) Web application for thermal comfort visualization and calculation according to ASHRAE Standard 55. Build Simul 7(4):321–334. doi:10.1007/s12273-013-0162-3 (ISSN 1996-3599)

    Article  Google Scholar 

  • Selvaraj N, Jaryal A, Santhosh J, Deepak KK, Anand S (2008) Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography. J Med Eng Technol 32(6):479–484. doi:10.1080/03091900701781317 (ISSN 0309-1902)

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423. doi:10.1002/j.1538-7305.1948.tb01338.x. http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6773024 (ISSN 00058580)

    MathSciNet  Article  Google Scholar 

  • Sunkaria RK (2011) Recent trends in nonlinear methods of HRV analysis: a review. Eng Technol 75(3):566–571 (ISSN 2010376X)

    Google Scholar 

  • Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93(5):1043–1065

  • Thayer JF, Nabors-Oberg R, Sollers JJ (1997) Thermoregulation and cardiac variability: a time-frequency analysis. Biomed Sci Instrum 34:252–256 (ISSN 0067-8856)

    Google Scholar 

  • Van Hoof J (2008) Forty years of Fanger’s model of thermal comfort: comfort for all? Indoor Air 18(3):182. doi:10.1111/j.1600-0668.2007.00516.x (ISSN 09056947)

    Article  Google Scholar 

  • Voss A, Heitmann A, Schroeder R, Peters A, Perz S (2012) Short-term heart rate variability—age dependence in healthy subjects. Physiol Meas 33(8):1289–1311. doi:10.1088/0967-3334/33/8/1289 (ISSN 09673334)

    Article  Google Scholar 

  • West BJ (2010) Fractal physiology and the fractional calculus: a perspective. Front Physiol:1–17. doi:10.3389/fphys.2010.00012 (ISSN 1664042X)

  • Willson K, Francis DP, Wensel R, Coats AJ, Parker KH (2002) Relationship between detrended fluctuation analysis and spectral analysis of heart-rate variability. Physiol Meas 23(2):385–401. doi:10.1088/0967-3334/23/2/314 (ISSN 0967-3334)

    Article  Google Scholar 

  • Yao Y, Lian Z, Liu W, Jiang C, Liu Y, Lu H (2009) Heart rate variation and electroencephalograph—the potential physiological factors for thermal comfort study. Indoor Air 19(2):93–101. doi:10.1111/j.1600-0668.2008.00565.x (ISSN 09056947)

    Article  Google Scholar 

  • Ye XJ, Zhou ZP, Lian ZW, Liu HM, Li CZ, Liu YM (2006) Field study of a thermal environment and adaptive model in Shanghai. Indoor Air 16(4):320–326. doi:10.1111/j.1600-0668.2006.00434.x (ISSN 0905-6947)

    Article  Google Scholar 

  • Yentes JM, Hunt N, Schmid KK, Kaipust JP, McGrath D, Stergiou N (2013) The appropriate use of approximate entropy and sample entropy with short data sets. Ann Biomed Eng 41(2):349–365. doi:10.1007/s10439-012-0668-3 (ISSN 1573-9686)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kizito N. Nkurikiyeyezu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nkurikiyeyezu, K.N., Suzuki, Y. & Lopez, G.F. Heart rate variability as a predictive biomarker of thermal comfort. J Ambient Intell Human Comput 9, 1465–1477 (2018). https://doi.org/10.1007/s12652-017-0567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-017-0567-4

Keywords

  • Heart rate variability
  • Thermal comfort
  • Life engineering
  • Personalized comfort
  • Human-centered computing