Orchestration of use-case driven analytics in 5G scenarios

Abstract

The SELFNET project provides an autonomic network management framework for 5G networks with a high degree of automation, self-healing and self-optimization. These capabilities are achieved through a layered architecture and a use-case driven approach. A differentiating feature on SELFNET is its competence when creating and customizing new use cases and their related virtual functions. In this way, the use case operators are able to introduce new rules and parameters that will be taken into account in the analysis and decision-making tasks. Due these characteristics, the orchestration of its analytical functions poses an important challenge in terms of configurability, synchronization and management of resources. In order to contribute to their resolution, this paper aims to lay the groundwork for implement the design and specification of the SELFNET Analyzer orchestration. To this end, several key issues related with the internal coordination of the analytics are introduced, among them initial assumptions, design principles, limitations, partitioning of the analysis process, data persistency and optimization. The proposed orchestration strategy has been implemented with different uses cases within the SELFNET Project.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Baldo N, Giupponi L, Mangues-Bafalluy J (2014) Big data empowered self organized networks. In: Proceedings of 20th European wireless conference, Barcelona, pp 1–8

  2. Barona López LI, Valdivieso Caraguay AL, Sotelo Monge MA, García Villalba LJ (2016) Key technologies in the context of future networks: operational and management requirements. Future Internet 9(1):1. doi:10.3390/fi9010001

    Article  Google Scholar 

  3. Barona López LI, Valdivieso Caraguay AL, Maestre Vidal J, Sotelo Monge MA, García Villalba LJ (2017a) Towards incidence management in 5G based on situational awareness. Future Internet 9(1):3. doi:10.3390/fi9010003

    Article  Google Scholar 

  4. Barona López LI, Maestre Vidal J, García Villalba LJ (2017b) An approach to data analysis in 5G networks. MDPI Entropy 9(2):1–23. doi:10.3390/e19020074

    Google Scholar 

  5. Bassiliades N, Vlahavas I, (1997) Processing production rules in DEVICE, an active knowledge base system. Data Knowl Eng 24(2):117–155. doi:10.1016/S0169-023X(97)00006-2

    Article  MATH  Google Scholar 

  6. CHARISMA Project (2014) Converged heterogeneous advanced 5G cloud-RAN architecture for intelligent and secure media access. Funded under H2020-ICT-2014-2. Project Reference 671704. http://www.charisma5g.eu/. Accessed 11 Apr 2017

  7. CROWD Project (2013) Connectivity management for energy optimised wireless dense networks. Funded under FP7-ICT. Project Reference 318115. http://www.ict-crowd.eu/. Accessed 11 Apr 2017

  8. CVSS Forum of Incident Response and Security Teams (2015) CVSS: common vulnerability scoring system. https://www.first.org/cvss/specification-document. Accessed 11 Apr 2017

  9. Endsley NR (1988) Design and evaluation for situation awareness enhancement. In: Proceedings of the human factors and ergonomics society annual meeting, Anaheim, 32(2):97–101

  10. ENISA (2015) ENISA Threat Landscape 2015. https://www.enisa.europa.eu/publications/etl2015. Accessed 11 Apr 2017

  11. Finkel A, Iyer SP, Sutre G (2003) Well-abstracted transition systems: application to FIFO automata. Inf Comput 181(1):1–31. doi:10.1016/S0890-5401(02)00027-5

    MathSciNet  Article  MATH  Google Scholar 

  12. 5G-Ensure Project (2014) Enablers for network and system security and resilience. Funded under H2020-ICT-2014-2. Project Reference 671562. http://www.5gensure.eu/. Accessed 11 Apr 2017

  13. 5G-NORMA Project (2014) 5G NOvel radio multiservice adaptive network architecture. Funded under H2020-ICT-2014-2. Project Reference 671584. https://5gnorma.5g-ppp.eu/. Accessed 11 Apr 2017

  14. 5G-NOW Project (2013) 5th generation non-orthogonal waveforms for asynchronous signalling. Funded under FP7-ICT. Project Reference 318555. http://www.5gnow.eu/. Accessed 11 Apr 2017

  15. Gordon MI, Thies W, Amarasinghe S (2006) Exploiting coarse-grained task, data, and pipeline parallelism in stream programs, In: Proceedings of the 12th international conference on architectural support for programming languages and operating systems, San Jose, pp 151–162

  16. 5G-PPP (2017) 5G infrastructure public private partnership. https://5g-ppp.eu. Accessed 11 Apr 2017

  17. Guillaume S, Charnomordic B, (2012) Fuzzy inference systems: an integrated modeling environment for collaboration between expert knowledge and data using FisPro. Expert Syst Appl 39(10):8744–8755. doi:10.1016/j.eswa.2012.01.206

    Article  Google Scholar 

  18. ISO International Organization for Standardization and the International Electrotechnical Commission (2005) ISO/IEC 27002: information technology, security techniques, code of practice for information security management. http://www.iso.org/iso/catalogue_detail?csnumber=54533. Accessed 11 Apr 2017

  19. Leau YB, Ahmad A, Manickam S (2015) Network security situation prediction: a review and discussion. In: Proceedings of the 4th international conference on soft computing, intelligent systems, and information technology, Bali, pp 424–435

  20. Lunardhi AD, Passino KM (1995) Verification of qualitative properties of rule-based expert systems. Int J Appl Artif Intell 9(6):587–621. doi:10.1080/08839519508945490

    Article  Google Scholar 

  21. MCN Project (2013) Mobile cloud networking. Funded under FP7-ICT. Project Reference 318109. http://www.mobile-cloud-networking.eu/site/. Accessed 11 Apr 2017

  22. METIS-II Project (2014) Mobile and wireless communications enablers for twenty-twenty (2020) information society-II. Funded under H2020-ICT-2014-2. Project Reference 671680. https://5g-ppp.eu/metis-ii/. Accessed 11 Apr 2017

  23. Mijumbi R, Serrat J, Gorricho JL, Bouten N, Turck F, Boutaba R (2016) Network function virtualization: state-of-the-art and research challenges. IEEE Commun Surv Tuts 18(1):236–262. doi:10.1109/comst.2015.2477041

    Article  Google Scholar 

  24. Neves P, Calé R et al (2016) The SELFNET approach for autonomic management in an NFV/SDN networking paradigm. Int J Distrib Sens Netw 12(2):1–17. doi:10.1155/2016/2897479

    Article  Google Scholar 

  25. NIST National Institute of Standards and Technology (2007) NIST-SP800 series special publications on computer security. http://csrc.nist.gov/publications/PubsSPs.html#SP800. Accessed 11 Apr 2017

  26. Osseiran A, Boccardi F et al (2014) Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun Mag 52(5):26–35. doi:10.1109/mcom.2014.6815890

    Article  Google Scholar 

  27. Qiao J, Shen XS, Mark JW, Shen Q, He Y, Lei L (2015) Enabling device-to-device communications in millimeter-wave 5G cellular networks. IEEE Commun Mag 53(1):209–215. doi:10.1109/MCOM.2015.7010536

  28. SELFNET Project (2014) Framework for self-organized network management in virtualized and software defined networks. Funded under H2020-ICT-2014-2. Project Reference 671672. https://SELFNET-5g.eu/. Accessed 11 Apr 2017

  29. SONATA Project (2014) Service programing and orchestration for virtualized software networks. Funded under H2020-ICT-2014-2. Project Reference 671517. http://www.sonata-nfv.eu/. Accessed 11 Apr 2017

  30. Su J, Xu C, Chenung SC, Xi W, Jiang Y, Cao C, Ma X, Lu J (2016) Hybrid CPU–GPU constraint checking: Towards efficient context consistency. Inf Softw Tech 74:230–242. doi:10.1016/j.infsof.2015.10.003

    Article  Google Scholar 

  31. T-NOVA Project (2013) Network functions as-a-service over virtualised infrastructures. Funded under FP7-ICT. Project Reference 619520. http://www.t-nova.eu/. Accessed 11 Apr 2017

  32. UNIFY Project (2013) Unifying cloud and carrier networks. Funded under FP7-ICT. Project Reference 619609. http://www.fp7-unify.eu/. Accessed 11 Apr 2017

  33. Wang YW, Hanson EN (1992) A performance comparison of the Rete and TREAT algorithms for testing database rule conditions. In: Proceedings of the 8th international conference on data engineering, Tempe, pp 88–97

  34. Wang TS, Lin HT, Cheng WT, Chen CY (2017) DBod: clustering and detecting DGA-based botnets using DNS traffic analysis. Comput Secur 64:1–15. doi:10.1016/j.cose.2016.10.001

    Article  Google Scholar 

  35. Webb J, Ahmad A, Maynard SB, Shanks G, Popovski P (2014) A situation awareness model for information security risk management. Comput Secur 44:1–15. doi:10.1016/j.cose.2014.04.005

    Article  Google Scholar 

  36. Xia W, Wen Y, Foh CH, Niyato D, Xie H (2015) A survey on software-defined networking. IEEE Commun Surv Tuts. 17(1):27–51. doi:10.1109/comst.2014.2330903

    Article  Google Scholar 

  37. Xu L, Assem H, Yahia IGB, Buda TS et al (2016) CogNet: a network management architecture featuring cognitive capabilities. In: Proceedings of the European conference on networks and communications, Athens, pp 325–329

  38. Zou H, Yu Y, Tang W, Chen HWM (2014) FlexAnalytics: a flexible data analytics framework for big data applications with I/O performance improvement. Big Data Res 1:4–13. doi:10.1016/j.bdr.2014.07.001

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the European Commission Horizon 2020 Programme under grant agreement number H2020-ICT-2014-2/671672 - SELFNET (Framework for Self-Organized Network Management in Virtualized and Software Defined Networks). Lorena Isabel Barona López is supported by the Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación SENESCYT (Quito, Ecuador) under Convocatoria Abierta 2013 Scholarship Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luis Javier García Villalba.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barona López, L.I., Maestre Vidal, J. & García Villalba, L.J. Orchestration of use-case driven analytics in 5G scenarios. J Ambient Intell Human Comput 9, 1097–1117 (2018). https://doi.org/10.1007/s12652-017-0542-0

Download citation

Keywords

  • 5G
  • Situational awareness
  • SDN/NFV
  • Data analysis
  • Orchestration