Skip to main content

Aggressive and agitated behavior recognition from accelerometer data using non-negative matrix factorization

Abstract

This paper presents a novel approach for aggressive and agitated behavior recognition using accelerometer data. Our approach applies first a noise reduction technique using the moving average filter method. Then, multiple features such as mean, variance, entropy, correlation and covariance are extracted from the filtered acceleration data using a sliding window. Non-negative matrix factorization is then used in order to project the data into a new reduced space that captures the significant structure of the data. The recognition is performed using the rotation forest ensemble method. The proposed approach is validated using extensive experiments on a real dataset collected at Toronto Rehabilitation Institute. We empirically demonstrate that our proposed approach accurately discriminates between behaviors and performs better than several state-of-the-art approaches.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. http://www.shimmersensing.com.

  2. http://www.shimmersensing.com/shop/shimmer3.

  3. Here we use the terms Behavior and Action interchangeably.

References

  • Aggarwal J, Cai Q (1999) Human motion analysis: a review. Comput Vis Image Underst 73(3):428–440

    Article  Google Scholar 

  • Arias-Castro E, Donoho DL (2009) Does median filtering truly preserve edges better than linear filtering? Ann Stat 37(3):1172–1206

    MathSciNet  Article  Google Scholar 

  • Atallah L, Lo B, King R, Yang GZ (2010) Sensor placement for activity detection using wearable accelerometers. In: Body sensor networks (BSN), 2010 international conference, pp 24–29

  • Azami H, Mohammadi K (2012) An improved signal segmentation using moving average and savitzky-golay filter. J Signal Inf Process 3(1):39–44

    Article  Google Scholar 

  • Baer T, Moore BC, Kluk K (2002) Effects of low pass filtering on the intelligibility of speech in noise for people with and without dead regions at high frequencies. J Acoust Soc Am 112(3):1133–1144

    Article  Google Scholar 

  • Bao L, Intille SS (2004) Activity recognition from user-annotated acceleration data. In: Pervasive computing, second international conference, PERVASIVE 2004, Vienna, Austria, proceedings, pp 1–17

  • Beeri MS, Werner P, Davidson M, Noy S (2002) The cost of behavioral and psychological symptoms of dementia (bpsd) in community dwelling alzheimer’s disease patients. Int J Geriatr Psychiatry 17(5):403–408

    Article  Google Scholar 

  • Bouziane A, Chahir Y, Molina M, Jouen F (2013) Unified framework for human behaviour recognition: an approach using 3d zernike moments. Neurocomputing 100: 107–116 (ISSN 0925-2312)

    Article  Google Scholar 

  • Brunet JP, Tamayo P, Golub TR, Mesirov JP (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci 101(12):4164–4169

    Article  Google Scholar 

  • Bruno B, Mastrogiovanni F, Sgorbissa A, Vernazza T, Zaccaria R (2013) Analysis of human behavior recognition algorithms based on acceleration data. In: Robotics and automation (ICRA), 2013 IEEE international conference, pp 1602–1607

  • Cai D, He X, Wu X, Han J (2008) Non-negative matrix factorization on manifold. In: Data mining, 2008. ICDM ’08. Eighth IEEE international conference, pp 63–72

  • Cohen-Mansfield J (1991) Instruction manual for the Cohen-Mansfield agitation inventory (cmai). Research Institute of the Hebrew Home of Greater Washington

  • Coronato A, Pietro GD, Paragliola G (2014) A situation-aware system for the detection of motion disorders of patients with autism spectrum disorders. Expert Syst Appl 41(17):7868–7877

    Article  Google Scholar 

  • Desai AK, Grossberg GT (2001) Recognition and management of behavioral disturbances in dementia. Prim Care Companion J Clin Psychiatry 3(3):93

    Article  Google Scholar 

  • Duong TV, Bui HH, Phung DQ, Venkatesh S (2005) Activity recognition and abnormality detection with the switching hidden semi-markov model. In: Computer vision and pattern recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol 1. IEEE, pp 838–845

  • Ermes M, Parkka J, Mantyjarvi J, Korhonen I (2008) Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. Inf Technol Biomed IEEE Trans 12(1):20–26

    Article  Google Scholar 

  • Fook VFS, Thang PV, Mon T, Htwe QQ, Phyo AAP, Jayachandran BJ, Yap P (2007) Automated recognition of complex agitation behavior of demented patient using video camera. In: 9th international conference one-health networking, application and services, pp 68–73

  • Gannot S, Burshtein D, Weinstein E (1998) Iterative and sequential kalman filter-based speech enhancement algorithms. Speech Audio Process IEEE Trans 6(4):373–385

    Article  Google Scholar 

  • Guo K (2011) Action recognition using log-covariance matrices of silhouette and optical-flow features. PhD thesis

  • Hung YX, Chiang CY, Hsu SJ, Chan CT (2010) Abnormality detection for improving elderŠs daily life independent. In: Aging friendly technology for health and independence. Springer, pp 186–194

  • Kanagal B, Sindhwani V (2010) Rank selection in low-rank matrix approximations: a study of cross-validation for nmfs. Reconstruction 1:1–10

    Google Scholar 

  • Kim J, Nakamura T, Kikuchi H, Sasaki T, Yamamoto Y (2013) Co-variation of depressive mood and locomotor dynamics evaluated by ecological momentary assessment in healthy humans. PLoS One 8(9)

    Article  Google Scholar 

  • Knuff A (2014) Application of actigraphy to the measurement of neuropsychiatric symptoms of agitation in dementia. Master’s thesis, Queen’s University, Canada

  • Krishnan NC, Cook DJ (2014) Activity recognition on streaming sensor data. Pervasive Mob Comput 10:138–154 (ISSN 1574-1192)

    Article  Google Scholar 

  • Kuncheva LI, Rodríguez JJ (2007) An experimental study on rotation forest ensembles. In: Proceedings of the 7th international conference on multiple classifier systems, MCS’07. Springer, Verlag, pp 459–468 (ISBN 978-3-540-72481-0)

  • Kwapisz JR, Weiss GM, Moore SA (2011) Activity recognition using cell phone accelerometers. SIGKDD Explor Newsl 12(2):74–82

    Article  Google Scholar 

  • Lawlor B (2002) Managing behavioural and psychological symptoms in dementia. Br J Psychiatry 181(6):463–465

    Article  Google Scholar 

  • Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791

    Article  Google Scholar 

  • Lee DD, Seung HS (2000) Algorithms for non-negative matrix factorization. In: In NIPS. MIT Press, Cambridge, pp 556–562

  • Li S, Hou X, Zhang H, Cheng Q (2001) Learning spatially localized, parts-based representation. In: Computer vision and pattern recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE computer society conference, volume 1, pp I-207–I-212

  • Liu J, Zhong L, Wickramasuriya J, Vasudevan V (2009) uwave: accelerometer-based personalized gesture recognition and its applications. Pervasive Mob Comput 5(6):657–675

    Article  Google Scholar 

  • Mahlberg R, Walther S (2007) Actigraphy in agitated patients with dementia: monitoring treatment outcomes. Zeitschrift fur Gerontologie und Geriatrie 40(3):178–184

    Article  Google Scholar 

  • Mallidou A, Oliveira N, Borycki E (2013) Behavioural and psychological symptoms of dementia: are there any effective alternative-to-antipsychotics strategies? OA Fam Med 1(1):1–6

    Google Scholar 

  • Manoochehri M, Huey ED (2012) Diagnosis and management of behavioral issues in front temporal dementia. Curr Neurol Neurosci Rep 12(5):528–536

    Article  Google Scholar 

  • Moore P, Xhafa F, Barolli L, Thomas A (2013). Monitoring and detection of agitation in dementia: towards real-time and big-data solutions. In: P2P, parallel, grid, cloud and internet computing (3PGCIC), eighth international conference, pp 128–135

  • Mori T, Fujii A, Shimosaka M, Noguchi H, Sato T (2007) Typical behavior patterns extraction and anomaly detection algorithm based on accumulated home sensor data. In: Future generation communication and networking (FGCN 2007), vol 2. IEEE, pp 12–18

  • Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study. J Artif Intell Res 11:169–198

    Article  Google Scholar 

  • Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2):111–126

    Article  Google Scholar 

  • Palmer SE (1977) Hierarchical structure in perceptual representation. Cognit Psychol 9(4):441–474

    Article  Google Scholar 

  • Pan WD, Yoshida S, Liu Q, Wu CL, Wang J, Zhu J, Cai DF (2013) Quantitative evaluation of severity of behavioral and psychological symptoms of dementia in patients with vascular dementia. Transl Neurodegener 2(9):2–7

    Google Scholar 

  • Pirttikangas S, Fujinami K, Nakajima T (2006) Feature selection and activity recognition from wearable sensors. In: Ubiquitous computing systems, third international symposium, UCS 2006, Seoul, Korea, October 11–13, 2006, proceedings, pp 516–527

    Chapter  Google Scholar 

  • Plötz T, Hammerla NY, Rozga A, Reavis A, Call N, Abowd GD (2012) Automatic assessment of problem behavior in individuals with developmental disabilities. In: Proceedings of the 2012 ACM conference on ubiquitous computing, pp 391–400

  • Qiu Q, Foo SF, Wai AAP, Pham VT, Maniyeri J, Biswas J, Yap P (2007) Multimodal information fusion for automated recognition of complex agitation behaviors of dementia patients. In: Information Fusion, 2007 10th international conference. IEEE, pp 1–8

  • Rajasekaran S, Luteran C, Qu H, Riley-Doucet C (2011) A portable autonomous multisensory intervention device (pamid) for early detection of anxiety and agitation in patients with cognitive impairments. In: Engineering in medicine and biology society, EMBC, 2011 annual international conference of the IEEE, pp 4733–4736

  • Ravi N, Dandekar N, Mysore P, Littman ML (2005) Activity recognition from accelerometer data. AAAI 5:1541–1546

    Google Scholar 

  • Tractenberg RE, Singer CM, Cummings JL, Thal LJ (2003) The sleep disorders inventory: an instrument for studies of sleep disturbance in persons with Alzheimer’s disease. J Sleep Res 12(4):331–337

    Article  Google Scholar 

  • Rodriguez J, Kuncheva L, Alonso C (2006) Rotation forest: a new classifier ensemble method. Pattern Anal Mach Intell IEEE Tran 28(10):1619–1630

    Article  Google Scholar 

  • Sakr G, Elhajj I, Huijer HS (2010) Support vector machines to define and detect agitation transition. Affect Comput IEEE Trans 1(2):98–108

    Article  Google Scholar 

  • Sheng B, Yang W, Sun C (2015) Action recognition using direction-dependent feature pairs and non-negative low rank sparse model. Neurocomputing 158:73–80

    Article  Google Scholar 

  • Stern TA (2010) Massachusetts General Hospital handbook of general hospital psychiatry. Saunders, Elsevier, 6 edition

  • Tampi RR, Williamson D, Muralee S, Mittal V, McEnerney N, Thomas J, Cash M, (2011) Behavioral and psychological symptoms of dementia: Parti \(\mathring{{\rm U}}\) epidemiology, neurobiology, heritability, and evaluation. Clin Geriatr 19(6):2–10

  • Xu W, Liu X, Gong Y (2003) Document clustering based on non-negative matrix factorization. In: Proceedings of the 26th annual international ACM SIGIR conference on research and development in information retrieval, pp 267–273

  • Zhu Y, Chen W, Guo G (2013) Fusing spatiotemporal features and joints for 3d action recognition. In: Computer vision and pattern recognition workshops (CVPRW), 2013 IEEE conference, pp 486–491

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belkacem Chikhaoui.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chikhaoui, B., Ye, B. & Mihailidis, A. Aggressive and agitated behavior recognition from accelerometer data using non-negative matrix factorization. J Ambient Intell Human Comput 9, 1375–1389 (2018). https://doi.org/10.1007/s12652-017-0537-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-017-0537-x

Keywords

  • Agitated Behavior
  • Behavior Recognition
  • Toronto Rehabilitation Institute (TRI)
  • Behavioral And Psychological Symptoms Of Dementia (BPSD)
  • Cohen-Mansfield Agitation Inventory (CMAI)