Advertisement

Volunteer selection based on crowdsourcing approach

  • Nurulhasanah Mazlan
  • Sharifah Sakinah Syed Ahmad
  • Massila Kamalrudin
Original Research

Abstract

Voluntary work is important today’s world. There are various versions of the volunteer management system referenced in industry resources. Several organizations have developed volunteer management systems designed to incorporate spontaneous volunteers. However, it can be difficult to find and recruit suitable volunteers for volunteer organizations because the volunteers have many criteria to match with tasks. Also, we still have lacking information on the process of crowdsourcing in volunteering perspective. This paper, we conduct a review of volunteering management systems and crowdsourcing approach. Based on the insights derived from this analysis, we identify some issues for future research. To solve this problem, we designed a framework for the crowdsourcing approach in volunteering system to automate the process of selection volunteers and match with the criteria of volunteers and tasks. Crowdsourcing is one of the best approaches to get more information and faster from the crowd and to be more precise with the requirement from beneficiaries. Fuzzy systems are suitable for such decision-making environments. The implications of the findings for volunteering system are discussed, and future research directions suggested.

Keywords

Volunteering system Volunteering matching Crowdsourcing Volunteering management Selection volunteer Fuzzy system 

Notes

Acknowledgements

The authors would like to express their gratitude to the First EAI International Conference on Computer Science and Engineering (COMPSE) 2016 in November 2016 at Penang, Malaysia. The authors also would like to acknowledge to Universiti Teknikal Malaysia Melaka (UTeM) and the Ministry of Higher Education Malaysia (MOHE) for the resources as well as the MyBrain15 scholarship.

References

  1. Allen K (2006) From motivation to action through volunteer-friendly organizations. Int J Volunt Adm 24:41–44. doi: 10.1017/CBO9781107415324.004 Google Scholar
  2. Altay N, Green WG III (2006) Interfaces with other disciplines OR/MS research in disaster operations management. Eur J Oper Res 175(1):475–493. doi: 10.1016/j.ejor.2005.05.016 CrossRefMATHGoogle Scholar
  3. Bang H, Ross SD (2009) Volunteer motivation and satisfaction. J Venue Event Manag 1(1):61–77Google Scholar
  4. Büecheler T, Lonigro R, Füchslin RM, Pfeifer R (2011) Modeling and simulating crowdsourcing as a complex biological system: human crowds manifesting collective intelligence on the internet. In: Lenaerts T, Giacobini M, Bersini H, Bourgine P, Dorigo M, Doursat R (eds) ECAL 2011. The eleventh european conference on the synthesis and simulation of living systems. MIT Press, Paris, pp 109–116Google Scholar
  5. Chatzimilioudis G, Konstantinidis A, Laoudias C, Zeinalipour-Yazti D (2012) Crowdsourcing with smartphones. IEEE Internet Comput 16(5):36–44. doi: 10.1109/MIC.2012.70 CrossRefGoogle Scholar
  6. Chen WC, Cheng YM, Sandnes FE, Lee CL (2011) Finding suitable candidates: the design of a mobile volunteering matching system. In: Jacko JA (ed) Human-computer interaction. Towards mobile and intelligent interaction environments. HCI 2011. Lecture notes in computer science, vol 6763. Springer, Berlin, HeidelbergGoogle Scholar
  7. Cravens J, Jackson R (2012) Survey of software tools used to track and manage volunteer information. http://www.coyotecommunications.com/tech/volmanagesoftware.pdf. Accessed 1 Apr 2017
  8. Cvetkoska V, Sekulovska Gaber B, Sekulovska M (2011) Recruitment and selection of student–volunteers: a multicriteria methodology. Management (1820–0222), 61:139–146Google Scholar
  9. Disability Equality (nw) (2013) Good practice in supported volunteering. http://www.disability-equality.org.uk. Accessed 18 Dec 2016
  10. Division of Industry and Community Network Universiti Sains Malaysia (2013) Volunteerism in Malaysia fostering civic responsibility. Penerbit USM.Google Scholar
  11. Ducharme EG (2012) Our Foundation—the basics of volunteer management. Can J Volunt Resour Manag 20.1:2–4Google Scholar
  12. Endo D, Sugita K (2010) A volunteer classification method for disaster recovery. In: 2010 international conference on P2P, parallel, grid, cloud and internet computing. IEEE, Fukuoka, pp 436–39. doi: 10.1109/3PGCIC.2010.73
  13. Estellés-Arolas E, González-Ladrón-de-Guevara F (2012) Towards an integrated crowdsourcing definition. J Inf Sci 38:1–22. doi: 10.1177/016555150000000 CrossRefGoogle Scholar
  14. Fernandez LS (2007) Volunteer management system design and analysis for disaster response and recovery. George Washington University, Washington, DCGoogle Scholar
  15. Fuchs-Kittowski F, Faust D (2014) Architecture of mobile crowdsourcing systems. In: Baloian N, Burstein F, Ogata H, Santoro F, Zurita G (eds) Collaboration and technology: 20th international conference, CRIWG 2014, Santiago, Chile, September 7–10, 2014. Proceedings. Springer International Publishing, Cham, pp 121–136. doi: 10.1007/978-3-319-10166-8_12 Google Scholar
  16. Furtmueller E (2012) Using tehcnology for global recruitment: why HR/OB scholars need is knowledge? University of Twente, EnschedeGoogle Scholar
  17. Geiger D, Seedorf S, Schulze T, Nickerson RC, Schader M (2011) Managing the crowd: towards a taxonomy of crowdsourcing processes. In: Proceedings of the Seventeenth Americas Conference on Information Systems, Detroit, Michigan. doi: 10.1113/jphysiol.2003.045575
  18. Hong S, De Florio V, Ning G, Blondia C (2007) Service matching in online community for mutual assisted living. In: Signal-image technologies and internet-based system, 2007. SITIS’07. Third international IEEE conference on, vol 80. IEEE, pp 427–433. doi: 10.1109/SITIS.2007.99
  19. Howard BW (1999) Managing volunteers. Aust J Emerg Manag 14(3):37–39. doi: 10.1016/B978-0-7506-6998-6.50011-1 Google Scholar
  20. Howe J (2006) The rise of crowdsourcing. Wired Mag 14(6):1–4Google Scholar
  21. Hughes K (2015a) New definition of volunteering in Australia. Definition for Volunteering 2015, July 30. http://www.volunteeringaustralia.org. Accessed 18 Dec 2016
  22. Hughes K (2015b) Opportunities in your hand—govolunteer goes mobile. Volunteering Australia, December 4. http://www.volunteeringaustralia.org/wp-content/uploads/041215-Media-Release-GoVol-App-launch_IVD.pdf. Accessed 18 Dec 2016
  23. Kittur A, Chi EH, Suh B (2008) Crowdsourcing user studies with mechanical turk. In: Proceeding of the twenty-sixth annual chi conference on human factors in computing systems—CHI’08, 453. ACM Press, New York, New York, USA. doi: 10.1145/1357054.1357127
  24. Kittur A, Nickerson JV, Bernstein MS, Gerber EM, Shaw A, Zimmerman J, Lease M, Horton J (2013) The future of crowd work. In: Proceedings of the 2013 conference on computer supported cooperative work (CSCW’13). New York, NY, USA, pp 1301–1317. doi: 10.1145/2441776.2441923
  25. Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice-Hall Inc, New JerseyMATHGoogle Scholar
  26. Konwerski P, Nashman H (2008) Philantherapy: a benefit for personnel and organisations managing volunteers (volunteer therapy). Volunt Action 9(1):46–59Google Scholar
  27. Kucherbaev P, Daniel F, Tranquillini S, Marchese M (2016) Crowdsourcing processes: a survey of approaches and opportunities. IEEE Internet Comput 20(2):50–56. doi: 10.1109/MIC.2015.96 CrossRefGoogle Scholar
  28. Kohler T, Stribl A, Stieger D (2016) Innovation for volunteer travel: using crowdsourcing to create change. In: Open tourism, pp 435–445. doi: 10.1007/978-3-642-54089-9
  29. LaToza TD, van der Hoek A (2016) Crowdsourcing in software engineering: models, opportunities, and challenges. IEEE Softw 33(1):74–80CrossRefGoogle Scholar
  30. Li Z, Hongjuan Z (2011) Research of crowdsourcing model based on case study. In: Icsssm11. IEEE, pp 1–5. doi: 10.1109/ICSSSM.2011.5959456
  31. Lo CC, Lin SC, Kuo SP, Tseng YC, Peng SY, Huang SM, Hung YN, Hung CF (2010) People help people: a pattern-matching localization with inputs from user community. ICS 2010—International Computer Symposium, pp 638–641. doi: 10.1109/COMPSYM.2010.5685435
  32. Lukowicz P, Pentland S, Ferscha A (2012) From context awareness to socially aware computing. IEEE Pervasive Comput 11(1):32–40. doi: 10.1109/MPRV.2011.82 CrossRefGoogle Scholar
  33. Lykourentzou I, Vergados DJ, Papadaki K, Naudet Y (2013) Guided crowdsourcing for collective work coordination in corporate environments. In: Costin B\vadic\va, Ngoc Thanh Nguyen, and Marius Brezovan (eds) Computational Collective Intelligence. Technologies and Applications: 5th International Conference, ICCCI 2013, Craiova, Romania, September 11–13, 2013, Proceedings. 8083 LNAI:90–99. Springer Berlin Heidelberg, Berlin, Heidelberg. doi: 10.1007/978-3-642-40495-5_10
  34. McCann R, Shen W, Doan A (2008) Matching schemas in online communities: a web 2.0 approach. In: 2008 IEEE 24th international conference on data engineering (pp 110–119). IEEE. doi: 10.1109/ICDE.2008.4497419
  35. Mckinley D (2013) How effectively are crowdsourcing websites supporting volunteer participation and quality contribution? New ZealandGoogle Scholar
  36. Mohan S, Agarwal N (2013) Mobile network-aware social computing applications: a framework, architecture, and analysis. J Ambient Intell Humaniz Comput 4(1):43–56. doi: 10.1007/s12652-011-0066-y CrossRefGoogle Scholar
  37. Muhdi L, Daiber M, Friesike S, Boutellier R (2011) Crowdsourcing: an alternative idea generation approach in the early innovation process phase of innovation. Int J Etrepreneurship Innov Manag 14(4):315–332CrossRefGoogle Scholar
  38. NHMRC (2003) Working with volunteers and managing volunteer programs in health care settingsGoogle Scholar
  39. Öztaysi B, Behret H, Kabak Ö, Sari IU, Kahraman C (2013) Fuzzy inference systems for disaster response. In: Vitoriano B, Montero J, Ruan D (eds) Decision aid models for disaster management and emergencies, vol 7. Atlantis Press, Paris, pp 17–44. doi: 10.2991/978-94-91216-74-9_2 CrossRefGoogle Scholar
  40. Parry DT, Tsai TC (2012) Crowdsourcing techniques to create a fuzzy subset of SNOMED CT for semantic tagging of medical documents. Soft Comput 16(7):1119–1127. doi: 10.1007/s00500-011-0787-z CrossRefGoogle Scholar
  41. Quinn LS, Andrei KH, Bernard C, Leslie J (2011) A consumers guide to software for volunteer managementGoogle Scholar
  42. Salem B, Lino JA, Rauterberg M (2010) SmartEx: a case study on user profiling and adaptation in exhibition booths. J Ambient Intell Humaniz Comput 1(3):185–198. doi: 10.1007/s12652-010-0018-y CrossRefGoogle Scholar
  43. “Samaritan” (n.d.) http://www.samaritans.org/. ​Accessed 1 Apr 2017
  44. Schönböck J, Raab M, Altmann J, Kapsammer E, Kusel A, Pröll B, Retschitzegger W, Schwinger W (2016) A survey on volunteer management systems. In: 49th Hawaii international conference on system sciences (HICSS), pp 767–776. doi: 10.1109/HICSS.2016.100
  45. Sharma D (2016) A review on technological advancements in crowd management. J Ambient Intell Humaniz Comput. doi: 10.1007/s12652-016-0432-x (Springer Berlin Heidelberg) Google Scholar
  46. Shen W, Doan A (2008) Matching schemas in online communities. 0:110–119Google Scholar
  47. Starbird K, Palen L (2011) Voluntweeters. In: Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems—CHI’11, 1071. doi: 10.1145/1978942.1979102
  48. Studer S, von Schnurbein G (2013) Organizational factors affecting volunteers: a literature review on volunteer coordination. Voluntas 24(2):403–440. doi: 10.1007/s11266-012-9268-y CrossRefGoogle Scholar
  49. Syed Ahmad SS (2012) Fuzzy modeling through granular computing. University of AlbertaGoogle Scholar
  50. Syed Ahmad SS (2015) A comparative study of concrete strength prediction using fuzzy modeling and neuro—fuzzy modeling techniques. In: Proceedings of mechanical engineering research day 2015: MERD’15. Centre for Advanced Research on Energy, pp 147–149Google Scholar
  51. UN Volunteers (2015) State of the world’s volunteerism report. http://www.volunteeractioncounts.org/. Accessed 18 Dec 2016
  52. Volunteer Centre Dorset (2010) The good practice guide to volunteer management. http://www.volunteeringdorset.org.uk. Accessed 20 Dec 2016
  53. Volunteer Glasgow (2010) Glasgow’s strategic volunteering framework. http://www.volunteerglasgow.org/partners/svf/. Accessed 20 Nov 2016
  54. “Volgistics” (n.d.) https://www.volgistics.com/. Accessed 1 Apr 2017
  55. Volunteer Impact (n.d.) https://www.betterimpact.com/. Accessed 1 Apr 2017
  56. “VolunteerMatters” (n.d.) ​http://volunteermatters.com/. ​Accessed 1 Apr 2017
  57. Wang J, Faridani S, Ipeirotis P (2011) Estimating the completion time of crowdsourced tasks using survival analysis models. Crowdsourcing for search and data mining (CSDM 2011), 31Google Scholar
  58. “Yayasan Sukarelawan Siswa (YSS)” (n.d.) https://prezi.com/_q0zqv0bja6g/yss-profile-english-ver2/. Accessed 11 Dec 2016
  59. YourVolunteers (n.d.) https://yourvolunteers.com/. ​Accessed 1 Apr 2017
  60. Yu Z, Zhang D, Yang D, Chen G (2012) Selecting the best solvers: toward community based crowdsourcing for disaster management. In: 2012 IEEE Asia-Pacific Services Computing Conference, pp 271–77. IEEE, Guilin. doi: 10.1109/APSCC.2012.20
  61. Yuen M, Chen L (2009) A survey of human computation systems. pp 723–28. doi: 10.1109/CSE.2009.395
  62. Zheng YL, Deng L, Li M (2009) Study on the event volunteer management based on the service blueprint. In: 2009 international conference on information management, innovation management and industrial engineering. Ieee, pp 408–11. doi: 10.1109/ICIII.2009.645

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Faculty of Information and Communication TechnologyUniversiti Teknikal Malaysia Melaka (UTeM)MelakaMalaysia

Personalised recommendations