An ontology-driven context-aware recommender system for indoor shopping based on cellular automata

Original Research
  • 168 Downloads

Abstract

Nowadays, large shopping malls provide tools to help and boost customers to buy products. Some of these tools melt down digital operations with physical ones executed by customers into blended commerce experiences. On the other hand, Ambient Intelligence (AmI) represents a paradigm focused on equipping physical environments to define ergonomic spaces for people interacting with computer-based localized services which are ubiquitously accessible. In this context, we propose a Context-Aware Recommender System to assist indoor shopping by localizing shoppers and provide them with suggestions on where to find suitable offerings related to products that meet their wishlists. Recommendations are generated by means of an Indoor Navigation System. The system lies on two well-known formal models: the Computational Ontologies and the Cellular Automata. Ontologies are based on Description Logic and defined by means of languages, methodologies and tools of the Semantic Web Stack provided by W3C. Cellular Automata is a very well known formal computational model, suitable to abstract services deployed into an AmI-based environment along with the paradigm of Pervasive Computing. The integration of the capabilities provided by such two models offers a set of desirable features like adaptivity, scalability, low-costs, and robustness.

Keywords

Ontologies Cellular automata Ambient intelligence Recommender systems Context-awareness 

Notes

Acknowledgments

The authors thanks students and research assistants of GandALF Lab (Università di Salerno) for supporting early experimentation activities of the system.

References

  1. Adomavicius G, Tuzhilin A (2011) Context-aware recommender systems. In: Recommender systems handbook, Springer, pp 217–253Google Scholar
  2. Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw 54(15):2787–2805CrossRefMATHGoogle Scholar
  3. Bandini S (2002) Cellular automata. Future Gener Comp Syst. doi: 10.1016/S0167-739X(02)00067-5
  4. Bellavista P, Kupper A, Helal S (2008) Location-based services: back to the future. Pervasive Comput IEEE 7(2):85–89CrossRefGoogle Scholar
  5. Bellavista P, Corradi A, Fanelli M, Foschini L (2012) A survey of context data distribution for mobile ubiquitous systems. ACM Comput Surv CSUR 44(4):24Google Scholar
  6. Colombo-Mendoza LO, Alor-Hernández G, Rodríguez-González A, Valencia-García R (2014) Mobicloup!: a paas for cloud services-based mobile applications. Autom Softw Eng 21(3):391–437CrossRefGoogle Scholar
  7. Compton M, Barnaghi P, Bermudez L, GarcíA-Castro R, Corcho O, Cox S, Graybeal J, Hauswirth M, Henson C, Herzog A et al (2012) The SSN ontology of the w3c semantic sensor network incubator group. Web Semant Sci Serv Agents World Wide Web 17:25–32CrossRefGoogle Scholar
  8. Conti M, Das SK, Bisdikian C, Kumar M, Ni LM, Passarella A, Roussos G, Tröster G, Tsudik G, Zambonelli F (2012) Looking ahead in pervasive computing: challenges and opportunities in the era of cyber-physical convergence. Pervasive Mob Comput 8(1):2–21CrossRefGoogle Scholar
  9. Cui B, Jin H, Liu Z, Deng J (2015) Improved collaborative filtering with intensity-based contraction. J Ambient Intell Humaniz Comput 6(5):661–674. doi: 10.1007/s12652-015-0284-9 CrossRefGoogle Scholar
  10. D’Aniello G, Gaeta M, Loia V, Orciuoli F (2015) An ami-based software architecture enabling evolutionary computation in blended commerce: the shopping plan application. Mob Inf Syst 2015:1–19, Article ID 936125. doi: 10.1155/2015/936125
  11. D’Aniello G, Gaeta A, Gaeta M, Lepore M, Orciuoli F, Troisi O (2016) A new DSS based on situation awareness for smart commerce environments. J Ambient Intell Human Comput 7(1):47–61. doi: 10.1007/s12652-015-0300-0 CrossRefGoogle Scholar
  12. De Maio C, Fenza G, Furno D, Loia V (2012a) Swarm-based semantic fuzzy reasoning for situation awareness computing. In: Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference IEEE, pp 1–7Google Scholar
  13. De Maio C, Fenza G, Furno D, Loia V, Senatore S (2012b) OWL-FC: an upper ontology for semantic modeling of fuzzy control. Soft Comput 16(7):1153–1164CrossRefGoogle Scholar
  14. Decuir J (2014) Introducing bluetooth smart: Part ii: applications and updates. Consum Electron Mag IEEE 3(2):25–29. doi: 10.1109/MCE.2013.2297617 CrossRefGoogle Scholar
  15. Endsley MR (1995) Toward a theory of situation awareness in dynamic systems. Human Factors J Human Factors Ergon Soc 37(1):32–64CrossRefGoogle Scholar
  16. Fallah N, Apostolopoulos I, Bekris K, Folmer E (2013) Indoor human navigation systems: a survey. Interact Comput 25(1):21–33Google Scholar
  17. Fenza G, Furno D, Loia V, Veniero M (2010) Agent-based cognitive approach to airport security situation awareness. In: Complex, Intelligent and Software Intensive Systems (CISIS), 2010 International Conference IEEE, pp 1057–1062Google Scholar
  18. Fenza G, Fischetti E, Fumo D, Loia V (2011) A hybrid context aware system for tourist guidance based on collaborative filtering. In: Fuzzy Systems (FUZZ), 2011 IEEE International Conference IEEE, pp 131–138Google Scholar
  19. Fenza G, Furno D, Loia V (2012) Hybrid approach for context-aware service discovery in healthcare domain. J Comput Syst Sci 78(4):1232–1247MathSciNetCrossRefGoogle Scholar
  20. Fuchs B, Ritz T, Halbach B, Hartl F (2011) Blended shopping: Interactivity and individualization. In: e-Business (ICE-B), 2011 Proceedings of the International Conference, pp 1–6Google Scholar
  21. Furey E, Curran K, Kevitt PM (2013) Probabilistic indoor human movement modeling to aid first responders. J Ambient Intell Human Comput 4(5):559–569. doi: 10.1007/s12652-012-0112-4 CrossRefGoogle Scholar
  22. Gangemi A (2009) DOLCE+ DnS ultralite. RDF + OWL ontology. http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
  23. Gruber TR (1995) Toward principles for the design of ontologies used for knowledge sharing? Int J Human Comput Stud 43(5):907–928CrossRefGoogle Scholar
  24. Gruska J, La Torre S, Parente M (2004) Optimal time and communication solutions of firing squad synchronization problems on square arrays, toruses and rings. In: Developments in language theory, (DLT), Lecture Notes in Computer Science, vol 3340, Springer, pp 200–211Google Scholar
  25. Gruska J, La Torre S, Parente M (2007) The firing squad synchronization problem on squares, toruses and rings. Int J Found Comput Sci 18(3):637–654MathSciNetCrossRefMATHGoogle Scholar
  26. Gu Y, Lo A, Niemegeers I (2009) A survey of indoor positioning systems for wireless personal networks. Commun Surv Tutor IEEE 11(1):13–32CrossRefGoogle Scholar
  27. Henricksen K, Indulska J (2006) Developing context-aware pervasive computing applications: models and approach. Pervasive Mob Comput 2(1):37–64CrossRefGoogle Scholar
  28. Hepp M (2008) Goodrelations: an ontology for describing products and services offers on the web. In: Knowledge engineering: practice and patterns, Springer, pp 329–346Google Scholar
  29. Horridge M, Drummond N, Goodwin J, Rector AL, Stevens R, Wang H (2006) The manchester owl syntax. In: OWL ed, vol 216Google Scholar
  30. Krötzsch M, Simancik F, Horrocks I (2014) Description logics. IEEE Intell Syst 29(1):12–19CrossRefMATHGoogle Scholar
  31. La Torre S, Napoli M, Parente D (1998) Synchronization of a line of identical processors at a given time. Fundam Inf 34(1–2):103–128. doi: 10.3233/FI-1998-341204 MathSciNetMATHGoogle Scholar
  32. La Torre S, Napoli M, Parente M (2000) A compositional approach to synchronize two dimensional networks of processors. ITA 34(6):549–564. doi: 10.1051/ita:2000130 MathSciNetMATHGoogle Scholar
  33. Lin Z (2013) Indoor location-based recommender system. PhD thesis, University of TorontoGoogle Scholar
  34. Moore EF (1962) The firing squad synchronization problem. Sequ Mach, pp 213–214Google Scholar
  35. Olugbara OO, Ojo SO, Mphahlele M (2010) Exploiting image content in location-based shopping recommender systems for mobile users. Int J Inf Technol Decis Mak 9(05):759–778CrossRefMATHGoogle Scholar
  36. Orciuoli F, Parente M, Vitiello A (2015) Solving the shopping plan problem through bio-inspired approaches. Soft Comput, pp 1–13Google Scholar
  37. Purohit A, Sun Z, Pan S, Zhang P (2013) Sugartrail: indoor navigation in retail environments without surveys and maps. In: Sensor, mesh and ad hoc communications and networks (SECON), 2013 10th Annual IEEE Communications Society Conference IEEE, pp 300–308Google Scholar
  38. Resnick P, Varian HR (1997) Recommender systems. Commun ACM 40(3):56–58CrossRefGoogle Scholar
  39. Rosenberg AL (2008) Cellular antomata: food-finding and maze-threading. In: Parallel Process. ICPP’08. 37th International Conference IEEE, pp 528–535Google Scholar
  40. Rosenberg AL (2012) Cellular antomata. Adv Complex Syst 15(06):28MathSciNetCrossRefGoogle Scholar
  41. Sadri F (2011) Ambient intelligence: a survey. ACM Comput Surv CSUR 43(4):36Google Scholar
  42. Schafer JB, Konstan J, Riedl J (1999) Recommender systems in e-commerce. In: Proceedings of the 1st ACM conference on electronic commerce, ACM, pp 158–166Google Scholar
  43. Shearer R, Motik B, Horrocks I (2008) Hermit: a highly-efficient owl reasoner. In: OWLED, vol 432, p 91Google Scholar
  44. TalebiFard P, Leung VCM (2014) Context-aware dissemination of information and services in heterogeneous network environments. J Ambient Intell Humaniz Comput 5(6):775–787. doi: 10.1007/s12652-013-0210-y CrossRefGoogle Scholar
  45. Tapia DI, Abraham A, Corchado JM, Alonso RS (2010) Agents and ambient intelligence: case studies. Journal of Ambient Intell Humaniz Comput 1(2):85–93. doi: 10.1007/s12652-009-0006-2 CrossRefGoogle Scholar
  46. Umeo H, Kubo K (2010) A seven-state time-optimum square synchronizer. In: Bandini S, Manzoni S, Umeo H, Vizzari G (eds) Cellular automata. Lecture notes in computer science, vol 6350. Springer, Berlin, pp 219–230Google Scholar
  47. Winkler C, Broscheit M, Rukzio E (2011) Navibeam: indoor assistance and navigation for shop-ping malls through projector phones. In: CHI 2011 Workshop on Mobile and Personal ProjectionGoogle Scholar
  48. Yang WS, Cheng HC, Dia JB (2008) A location-aware recommender system for mobile shopping environments. Expert Syst Appl 34(1):437–445CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.DISA-MIS–Dipartimento di Scienze Aziendali Management & Innovation SystemsUniversità di SalernoFiscianoItaly
  2. 2.DIEM–Dipartimento di Ingegneria dell’Informazione, Ingegneria Elettrica e,Matematica ApplicataUniversità di SalernoFiscianoItaly

Personalised recommendations