Advertisement

Robust real-time pedestrian detection in surveillance videos

  • Domonkos Varga
  • Tamás Szirányi
Original Research

Abstract

Detecting different categories of objects in an image and video content is one of the fundamental tasks in computer vision research. Pedestrian detection is a hot research topic, with several applications including robotics, surveillance and automotive safety. We address the problem of detecting pedestrians in surveillance videos. In this paper, we present a new feature extraction method based on Multi-scale Center-symmetric Local Binary Pattern operator. All the modules (foreground segmentation, feature pyramid, training, occlusion handling) of our proposed method are introduced with its details about design and implementation. Experiments on CAVIAR and other sequences show that the presented system can detect pedestrians in real-time effectively and accurately in surveillance videos.

Keywords

Video surveillance Pedestrian detection Feature extraction 

Notes

Acknowledgments

This work has been supported by the EU FP7 Programme (FP7-SEC-2011-1) No. 285320 (PROACTIVE project). The research was also partially supported by the Hungarian Scientific Research Fund (No. OTKA 106374).

References

  1. Ahonen T, Hadid A, Pietikäinen M (2004) Face recognition with local binary patterns. In: Computer vision-eccv 2004. Springer, Berlin, Heidelberg, pp 469–481Google Scholar
  2. Benenson R, Omran M, Hosang J, Schiele B (2014) Ten years of pedestrian detection, what have we learned? In: Agapito L, Bronstein MM, Rother C (eds) Computer Vision-ECCV 2014 Workshops. Springer, pp 613–627Google Scholar
  3. Caviar (2007). http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/. Accessed 3 Aug 2015
  4. Chang CC, Lin CJ (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2(3):27Google Scholar
  5. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on IEEE, vol 1, pp 886–893Google Scholar
  6. Dollár P, Tu Z, Perona P, Belongie S (2009a) Integral channel features. In: BMVC, vol 2, p 5Google Scholar
  7. Dollár P, Wojek C, Schiele B, Perona P (2009b) Pedestrian detection: a benchmark. In: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, IEEE, pp 304–311Google Scholar
  8. Dollar P, Wojek C, Schiele B, Perona P (2012) Pedestrian detection: an evaluation of the state of the art. Pattern Anal Mach Intell IEEE Trans 34(4):743–761CrossRefGoogle Scholar
  9. Enzweiler M, Gavrila DM (2009) Monocular pedestrian detection: survey and experiments. Pattern Anal Mach Intell IEEE Trans 31(12):2179–2195CrossRefGoogle Scholar
  10. Ess A, Leibe B, Schindler K, Gool LV (2008) A mobile vision system for robust multi-person tracking. In: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, IEEE, pp 1–8Google Scholar
  11. Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2010) Object detection with discriminatively trained part-based models. Pattern Anal Mach Intell IEEE Trans 32(9):1627–1645CrossRefGoogle Scholar
  12. Forsyth DA, Fleck MM (1997) Body plans. In: Computer Vision and Pattern Recognition, 1997. Proceedings, 1997 IEEE Computer Society Conference on IEEE, pp 678–683Google Scholar
  13. Gavrila DM (2007) A bayesian, exemplar-based approach to hierarchical shape matching. Pattern Anal Mach Intell IEEE Trans 29(8):1408–1421CrossRefGoogle Scholar
  14. Guan YP (2010) Spatio-temporal motion-based foreground segmentation and shadow suppression. Computer Vision, IET 4(1):50–60CrossRefGoogle Scholar
  15. Havasi L, Varga D, Szirányi T (2014) Lhi-tree: an efficientdisk-based image search application. In: Computational Intelligence for Multimedia Understanding (IWCIM), 2014 International Workshop on IEEE, pp 1–5Google Scholar
  16. Heikkilä M, Pietikäinen M, Schmid C (2006) Description of interest regions with center-symmetric local binary patterns. In: Computer vision, graphics and image processing. Springer, Berlin, Heidelberg, pp 58–69Google Scholar
  17. Hwang S, Park J, Kim N, Choi Y, Kweon IS (2013) Multispectral pedestrian detection: benchmark dataset and baseline. Integr Comput Aided Eng 20:347–360Google Scholar
  18. Leibe B, Seemann E, Schiele B (2005) Pedestrian detection in crowded scenes. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on IEEE, vol 1, pp 878–885Google Scholar
  19. Lin Z, Davis LS (2008) A pose-invariant descriptor for human detection and segmentation. In: Computer Vision–ECCV 2008. Springer, Berlin, Heidelberg, pp 423–436Google Scholar
  20. Lin Z, Davis LS (2010) Shape-based human detection and segmentation via hierarchical part-template matching. Pattern Anal Mach Intell IEEE Trans 32(4):604–618CrossRefGoogle Scholar
  21. Maji S, Berg AC, Malik J (2008) Classification using intersection kernel support vector machines is efficient. In: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, IEEE, pp 1–8Google Scholar
  22. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Pattern Anal Mach Intell IEEE Trans 24(7):971–987CrossRefzbMATHGoogle Scholar
  23. Papageorgiou C, Poggio T (2000) A trainable system for object detection. Int J Comput Vis 38(1):15–33CrossRefzbMATHGoogle Scholar
  24. Pietikäinen M (2005) Image analysis with local binary patterns. In: Image analysis. Springer, Berlin, Heidelberg, pp 115–118Google Scholar
  25. Seemann E, Leibe B, Schiele B (2006) Multi-aspect detection of articulated objects. In: Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, IEEE, vol 2, pp 1582–1588Google Scholar
  26. Topi M, Timo O, Matti P, Maricor S (2000) Robust texture classification by subsets of local binary patterns. In: Pattern Recognition, 2000. Proceedings. 15th International Conference on, IEEE, vol 3, pp 935–938Google Scholar
  27. Varga D, Szirányi T, Kiss A, Sporás L, Havasi L (2015) A multi-view pedestrian tracking method in an uncalibrated camera network. In: Proceedings of the IEEE international conference on computer vision workshops, pp 37–44Google Scholar
  28. Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154CrossRefGoogle Scholar
  29. Wojek C, Schiele B (2008) A performance evaluation of single and multi-feature people detection. In: Pattern recognition. Springer, pp 82–91Google Scholar
  30. Xu R, Guan Y, Huang Y (2015) Multiple human detection and tracking based on head detection for real-time video surveillance. Multimed Tools Appl 74(3):729–742CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.MTA SZTAKI, Computer and Automation Research Institute of the Hungarian Academy of Sciences BudapestHungary
  2. 2.Department of Material Handling and Logistics SystemsBudapest University of Technology BudapestHungary

Personalised recommendations