Skip to main content
Log in

On-body TOA-based ranging error model for motion capture applications within wearable UWB networks

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

We present herein an error model that characterizes on-body range measurements based on time of arrival (TOA) estimation in Impulse radio-ultra wideband, wireless body area networks. Considering real channel measurements over two representative on-body links for repeated walk cycles, the model is drawn as a conditional mixture, accounting for signal to noise ratio (SNR) variations and non line of sight (NLOS) channel obstructions caused by the body. Key model parameters are then investigated as a function of the previous obstruction and SNR configurations, illustrating missed/false path detection effects at low SNR. On this occasion, two TOA estimators are compared, namely a strongest path detection scheme through matched filtering and a first path detection scheme relying on high-resolution channel estimation. Finally, we discuss the possibility to generalize the previous model to any kind of on-body link, based on empirical observations regarding the dynamic range of the channel power transfer function under mobility. Accordingly, the resulting final model could integrate basic elements of classification, such as the instantaneous LOS/NLOS and static/dynamic link status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ben Hamida E, Maman M, Denis B, Ouvry L (2010) Localization performance in wireless body sensor networks with beacon enabled mac and space-time dependent channel model. In: Personal, indoor and mobile radio communications workshops (PIMRC Workshops), 2010 IEEE 21st International Symposium, pp 128–133

  • Denis B, Keignart J (2003) Post-processing framework for enhanced uwb channel modeling from band-limited measurements. In: Ultra wideband systems and technologies, 2003 IEEE Conference, pp 260–264

  • D’Errico R, Ouvry L (2009) Time-variant ban channel characterization. In: Personal, indoor and mobile radio communications, 2009 IEEE 20th International Symposium, pp 3000–3004

  • Destino G, Macagnano D, Abreu G, Denis B, Ouvry L (2007) Localization and tracking for ldr-uwb systems. In Mobile and Wireless Communications Summit, 2007, IEEE. 16th IST, pp 1–5

  • Di Renzo M, Buehrer R, Torres J (2007) Pulse shape distortion and ranging accuracy in uwb-based body area networks for full-body motion capture and gait analysis. In: Global telecommunications conference, 2007. GLOBECOM’07. IEEE, pp 3775–3780

  • Gezici S, Tian Z, Giannakis G, Kobayashi H, Molisch A, Poor H, Sahinoglu Z (2005) Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks.In: Signal processing magazine, IEEE, 22(4):70–84

    Google Scholar 

  • Kyung-Sup K, Ullah S, Ullah N (2010) An overview of ieee 802.15.6 standard. In: Applied sciences in biomedical and communication technologies (ISABEL), 2010 3rd International Symposium, pp 1–6

  • Mekonnen Z, Slottke E, Luecken H, Steiner C, Wittneben A (2010) Constrained maximum likelihood positioning for uwb based human motion tracking. In: Indoor positioning and indoor navigation (IPIN), 2010 International Conference, pp 1–10

  • Sahinoglu Z, Gezici S, Guvenc I (2008) Ultra-wideband positioning systems: theoretical limits, ranging algorithms, and protocols. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Shaban H, El-Nasr M, Buehrer R (2010) Toward a highly accurate ambulatory system for clinical gait analysis via uwb radios. Inf Technol Biomed IEEE Trans 14(2):284–291

    Article  Google Scholar 

  • Ullah S, Higgins H, Braem B, Latre B, Blondia C, Moerman I, Saleem S, Rahman Z, Kwak K (2012) A comprehensive survey of wireless body area networks. J Med Syst 36(3):1065–1094

    Article  Google Scholar 

  • Yang L (2004) The applicability of the tap-delay line channel model to ultra wideband. PhD thesis, Virginia Polytechnic Institute and State University

Download references

Acknowledgments

This work has been carried out in the frame of the CORMORAN project, which is funded by the French National Research Agency (ANR) under the contract number ANR-11-INFR-010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihad Hamie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamie, J., Denis, B., D’Errico, R. et al. On-body TOA-based ranging error model for motion capture applications within wearable UWB networks. J Ambient Intell Human Comput 6, 603–612 (2015). https://doi.org/10.1007/s12652-013-0215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-013-0215-6

Keywords

Navigation