Skip to main content
Log in

GraphInterpreter: a visual analytics approach for dynamic networks evolution exploration via topic models

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

We propose a novel visual analytics approach based on the Latent Dirichlet Allocation (LDA) model for exploring and interpreting the dynamic evolution of networks. In this approach, we define networks as documents and relationships within networks as words. Using this definition, the LDA model is able to extract a list of structures that fuse relationships and connect the network features. We project networks described by the extracted structures with probabilistic assignments as points into a two-dimensional space via dimensionality reduction techniques. Users can identify evolution states in dynamic networks, including stable states, recurrent states, outlier states, and state transitions. To facilitate the interpretation of evolution states, we provide a novel small multiples view that shows how the extracted structures behave over time. We demonstrate the effectiveness of our work through case studies conducted on two real-world dynamic networks.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abello J, Hadlak S, Schumann H, Schulz H-J (2014) A modular degree-of-interest specification for the visual analysis of large dynamic networks. IEEE Trans Visual Comput Graphics 20(3):337–350. https://doi.org/10.1109/tvcg.2013.109

    Article  Google Scholar 

  • Bach B, Pietriga E, Fekete J-D (2014) Graphdiaries: animated transitions and temporal navigation for dynamic networks. IEEE Trans Visual Comput Graphics 20(5):740–754. https://doi.org/10.1109/tvcg.2013.254

    Article  Google Scholar 

  • Beck F, Burch M, Diehl S, Weiskopf D (2014) The state of the art in visualizing dynamic graphs. EuroVis STAR. https://doi.org/10.2312/eurovisstar.20141174

  • Beck F, Burch M, Diehl S, Weiskopf D (2016) A taxonomy and survey of dynamic graph visualization. In: Computer graphics forum, vol 36, pp 133–159. Wiley Online Library, 2016. https://doi.org/10.1111/cgf.12791

  • Blei DM, Ng AY, Jordan MI (2002) Latent Dirichlet allocation. J Mach Learn Res 3:2003

    Google Scholar 

  • Burch M, Fritz M, Beck F, Diehl S (2010) Timespidertrees: a novel visual metaphor for dynamic compound graphs. In: 2010 IEEE symposium on visual languages and human-centric computing, pp 168–175. IEEE. https://doi.org/10.1109/vlhcc.2010.31

  • Cha Y, Cho J (2012) Social-network analysis using topic models. In: Proceedings of the 35th international ACM SIGIR conference on research and development in information retrieval, pp 565–574. ACM. https://doi.org/10.1145/2348283.2348360

  • Che L, Liang J, Yuan X, Shen J, Xu J, Li Y (2015) Laplacian-based dynamic graph visualization. In: 2015 IEEE pacific visualization symposium (PacificVis), pp 69–73. IEEE. https://doi.org/10.1109/pacificvis.2015.7156358

  • Dang TN, Pendar N, Forbes AG (2016) Timearcs: visualizing fluctuations in dynamic networks. In: Computer graphics forum, vol 35, pp 61–69. Wiley Online Library. https://doi.org/10.1111/cgf.12882

  • Diehl S, Görg C, Kerren A (2001) Preserving the mental map using foresighted layout. In: Data visualization 2001, pp 175–184. Springer. https://doi.org/10.1007/978-3-7091-6215-6_19

  • Diehl S, Görg C (2002) Graphs, they are changing- dynamic graph drawing for a sequence of graphs. In: Proceedings of 10th international symposium graph drawing (GD 2002), number 2528 in Lecture Notes in Computer Science, LNCS, pp 23–31. Springer. 10.1007/3-540-36151-0_3

  • Dwyer T, Eades P (2002) Visualising a fund manager flow graph with columns and worms. In: Information Visualisation, 2002. Proceedings. Sixth international conference on, pp 147–152. IEEE. https://doi.org/10.1109/iv.2002.1028770

  • Erten C, Harding PJ, Kobourov SG, Wampler K, Yee G (2003) Graphael: graph animations with evolving layouts. In: International symposium on graph drawing, pp. 98–110. Springer. 10.1007/978-3-540-24595-7_9

  • Erten C, Kobourov SG, Le V, Navabi A (2003) Simultaneous graph drawing: layout algorithms and visualization schemes. In: International symposium on graph drawing, pp 437–449. Springer. https://doi.org/10.7155/jgaa.00104

  • Falkowski T, Bartelheimer J, Spiliopoulou M (2006) Mining and visualizing the evolution of subgroups in social networks. In: Proceedings of the 2006 IEEE/WIC/ACM international conference on web intelligence, pp 52–58. IEEE Computer Society. https://doi.org/10.1109/wi.2006.118

  • Forrester D, Kobourov SG, Navabi A, Wampler K, Yee GV (2004) Graphael: a system for generalized force-directed layouts. In: International symposium on graph drawing. Springer. 10.1007/978-3-540-24595-7_9, pp 454–464

  • Gorochowski TE, di Bernardo M, Grierson CS (2012) Using aging to visually uncover evolutionary processes on networks. IEEE Trans Visual Comput Graphics 18(8):1343–1352. https://doi.org/10.1109/tvcg.2011.142

    Article  Google Scholar 

  • Greilich M, Burch M, Diehl S (2009) Visualizing the evolution of compound digraphs with timearctrees. In: Computer graphics forum, vol 28, pp 975–982. Wiley Online Library. https://doi.org/10.1111/j.1467-8659.2009.01451.x

  • Hadlak S, Schumann H, Cap CH, Wollenberg T (2013) Supporting the visual analysis of dynamic networks by clustering associated temporal attributes. IEEE Trans Visual Comput Graphics 19(12):2267–2276. https://doi.org/10.1109/tvcg.2013.198

    Article  Google Scholar 

  • Henderson K, Eliassi-Rad T (2009) Applying latent dirichlet allocation to group discovery in large graphs. In: Proceedings of the 2009 ACM symposium on applied computing, pp 1456–1461. ACM. https://doi.org/10.1145/1529282.1529607

  • Hinton GE (2008) Visualizing high-dimensional data using t-sne. Vigiliae Christianae 9(2):2579–2605

    Google Scholar 

  • Huang ML, Eades P, Wang J (1998) On-line animated visualization of huge graphs using a modified spring algorithm. J Visual Lang Comput 9(6):623–645. https://doi.org/10.1006/jvlc.1998.0094

    Article  Google Scholar 

  • Isenberg P, Heimerl F, Koch S, Isenberg T, Xu P, Stolper C, Sedlmair M, Chen J, Möller T, Stasko J (2015) Visualization publication dataset. dataset: http://vispubdata.org/http://vispubdata.org/~

  • Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1):1–27. https://doi.org/10.1007/bf02289565

    Article  MathSciNet  Google Scholar 

  • Pearson K (1901) On lines and planes of closest fit to systems of points in space. Phil Mag 2(6):559–572. https://doi.org/10.1080/14786440109462720

    Article  Google Scholar 

  • Rufiange S, McGuffin MJ (2013) Diffani: visualizing dynamic graphs with a hybrid of difference maps and animation. IEEE Trans Visual Comput Graphics 19(12):2556–2565. https://doi.org/10.1109/tvcg.2013.149

    Article  Google Scholar 

  • Shi L, Wang C, Wen Z (2011) Dynamic network visualization in 1.5 d. In: 2011 IEEE Pacific visualization symposium, pp 179–186. IEEE. https://doi.org/10.1109/pacificvis.2011.5742388

  • Steiger, M, Bernard J, Mittelstädt S, Lücke-Tieke H, Keim D, May T, Kohlhammer J (2014) Visual analysis of time-series similarities for anomaly detection in sensor networks. In: Computer graphics forum, vol 33, pp 401–410. Wiley Online Library. https://doi.org/10.1111/cgf.12396

  • van den Elzen S, Holten D, Blaas J, van Wijk JJ (2016) Reducing snapshots to points: a visual analytics approach to dynamic network exploration. IEEE Trans Visual Comput Graphics 22(1):1–10. https://doi.org/10.1109/tvcg.2015.2468078

    Article  Google Scholar 

  • van der Maaten L, Postma EO (2008) and H. A comparative review, J. van den Herik. Dimensionality reduction

  • Vehlow C, Beck F, Auwärter P, Weiskopf D (2015) Visualizing the evolution of communities in dynamic graphs. In: Computer graphics forum, vol 34, pp 277–288. Wiley Online Library, 2015. https://doi.org/10.1111/cgf.12512

  • Vehlow C, Beck F, Weiskopf D (2016) Visualizing dynamic hierarchies in graph sequences. IEEE Trans Visual Comput Graphics 22(10):2343–2357. https://doi.org/10.1109/TVCG.2015.2507595

    Article  Google Scholar 

  • von Landesberger T, Diel S, Bremm S, Fellner DW (2015) Visual analysis of contagion in networks. Inf Vis 14(2):93–110. https://doi.org/10.1177/1473871613487087

    Article  Google Scholar 

  • Wang Y, Wang Y, Sun Y, Zhu L, Lu K, Fu C-W, Sedlmair M, Deussen O, Chen B (2017) Revisiting stress majorization as a unified framework for interactive constrained graph visualization. IEEE Trans Visual Comput Graph. https://doi.org/10.1109/tvcg.2017.2745919

  • Zhang H, Qiu B, Giles CL, Foley HC, Yen J (2007) An lda-based community structure discovery approach for large-scale social networks. In: Intelligence and security informatics, 2007 IEEE, pp 200–207. IEEE. https://doi.org/10.1109/isi.2007.379553

Download references

Acknowledgments

This work is supported by NSFC, No. 62272012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoru Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Yu, J., Hong, F. et al. GraphInterpreter: a visual analytics approach for dynamic networks evolution exploration via topic models. J Vis (2024). https://doi.org/10.1007/s12650-024-00993-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12650-024-00993-z

Keywords

Navigation