Skip to main content
Log in

GeoVis: a data-driven geographic visualization recommendation system via latent space encoding

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

As one of the effective means of representing geographic information, geographic visualization can directly improve the cognitive efficiency of users who are perceiving geospatial data. The existing geographic information visualization relies heavily on the background knowledge and visualization skills the data workers own. Therefore, the geographic visualization task is usually very time-consuming and challenging. To lower the barrier of visualization of geographical data, we propose a novel recommendation system of geographic information visualization called GeoVis. This system extracts the distribution characteristics with adaptive kernel density estimation and recommends the map type (scatter, bubble, hexbin and heatmap) that can best reflect the regularity of data distribution based on latent code. The key idea of how the data-driven recommendation works is to use latent code to express and decouple data features and then learn the mapping between data features and visual styles. At the same time, this system recommends design choices (e.g., map styles and color schemes). Users only need to browse the recommendation results to realize explorations and analyses of the dataset, which will greatly improve their work efficiency. We conduct a series of evaluation experiments on the proposed system, including a case study. The experiment results show that the system is practical and effective and can perform the task of recommending informative and esthetic geographical visualization results well.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. https://www.economist.com/graphic-detail.

  2. https://public.tableau.com/app/discover/viz-of-the-day.

  3. https://informationisbeautiful.net/blog/.

  4. https://www.visualisingdata.com/blog/.

  5. https://junkcharts.typepad.com/.

References

  • Acedo A, Painho M, Casteleyn S, Roche S (2018) Place and city: toward urban intelligence. ISPRS Int J Geo Inf 7(9):346

    Article  Google Scholar 

  • Aly HA, Dubois E (2005) Image up-sampling using total-variation regularization with a new observation model. IEEE Trans Image Process 14(10):1647–1659

    Article  Google Scholar 

  • Andrienko N, Andrienko G, Fuchs G, Slingsby A, Turkay C, Wrobel S (2020) Visual analytics for data scientists. Springer, Berlin

    Book  Google Scholar 

  • Andrienko G, Andrienko N, Boldrini C, Caldarelli G, Cintia P, Cresci S, Facchini A, Giannotti F, Gionis A, Guidotti R et al (2020) (So) Big data and the transformation of the city. Int J Data Sci Anal 1–30

  • Andrienko G, Andrienko N, Drucker S, Fekete J-D, Fisher D, Idreos S, Kraska T, Li G, Ma K-L, Mackinlay J et al (2020) Big data visualization and analytics: future research challenges and emerging applications. In: BigVis 2020: big data visual exploration and analytics

  • Bertini E, Santucci G (2004) By chance is not enough: preserving relative density through nonuniform sampling. In: Proceedings of eighth international conference on information visualisation, 2004. IV 2004. IEEE, pp 622–629

  • Birren F (1969) A grammar of color, a basic treatise on the color system of Albert H. Munsell

  • Borkin MA, Vo AA, Bylinskii Z, Isola P, Sunkavalli S, Oliva A, Pfister H (2013) What makes a visualization memorable? IEEE Trans Visual Comput Graph 19(12):2306–2315

    Article  Google Scholar 

  • Breiman L, Meisel W, Purcell E (1977) Variable kernel estimates of multivariate densities. Technometrics 19(2):135–144

    Article  Google Scholar 

  • Brewer CA, Pickle L (2002) Evaluation of methods for classifying epidemiological data on choropleth maps in series. Ann Assoc Am Geogr 92(4):662–681

    Article  Google Scholar 

  • Chen X, Ge T, Zhang J, Chen B, Fu C-W, Deussen O, Wang Y (2019) A recursive subdivision technique for sampling multi-class scatterplots. IEEE Trans Vis Comput Graph 26(1):729–738

    Article  Google Scholar 

  • Chen J, Huang Q, Wang C, Li C (2023) Sensemap: urban performance visualization and analytics via semantic textual similarity. IEEE Trans Vis Comput Graph

  • Chen J, Huang H, Ye H, Zhong P, Li C, Wang C (2024) Salientime: user-driven selection of salient time steps for large-scale geospatial data visualization. In: Proceedings of the 2024 CHI conference on human factors in computing systems

  • DeBoer M (2015) Understanding the heat map. Cartograph Perspect 80:39–43

    Article  Google Scholar 

  • Dibia V, Demiralp Ç (2019) Data2vis: automatic generation of data visualizations using sequence-to-sequence recurrent neural networks. IEEE Comput Graphics Appl 39(5):33–46

    Article  Google Scholar 

  • Dix A, Ellis G (2002) By chance enhancing interaction with large data sets through statistical sampling. In: Proceedings of the working conference on advanced visual interfaces, pp 167–176

  • Ellis G, Dix A (2002) Density control through random sampling: an architectural perspective. In: Proceedings sixth international conference on information visualisation. IEEE, pp 82–90

  • Ellis G, Dix A (2007) A taxonomy of clutter reduction for information visualisation. IEEE Trans Vis Comput Graph 13(6):1216–1223

    Article  Google Scholar 

  • Eremia M, Toma L, Sanduleac M (2017) The smart city concept in the 21st century. Procedia Eng 181:12–19

    Article  Google Scholar 

  • Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Adv Neural Inf Process Syst 27

  • Heimerl F, Chang C-C, Sarikaya A, Gleicher M (2018) Visual designs for binned aggregation of multi-class scatterplots. Preprint arXiv:1810.02445

  • Hu K, Orghian D, Hidalgo C (2018) Dive: a mixed-initiative system supporting integrated data exploration workflows. In: Proceedings of the workshop on human-in-the-loop data analytics, pp 1–7

  • Hu Y, Gao S, Lunga D, Li W, Newsam S, Bhaduri B (2019) GeoAI at ACM SIGSPATIAL: progress, challenges, and future directions. Sigspatial Spec 11(2):5–15

    Article  Google Scholar 

  • Hu K, Bakker MA, Li S, Kraska T, Hidalgo C (2019) Vizml: A machine learning approach to visualization recommendation. In: Proceedings of the 2019 CHI conference on human factors in computing systems, pp 1–12

  • Jacobs J, Rudis B (2014) Data-driven security: analysis, visualization and dashboards. Wiley, New York

    Google Scholar 

  • Keim DA, Panse C, North SC (2005) Medial-axis-based cartograms. IEEE Comput Graph Appl 25(3):60–68

    Article  Google Scholar 

  • Li C, Baciu G, Han Y (2017) Streammap: smooth dynamic visualization of high-density streaming points. IEEE Trans Vis Comput Graph 24(3):1381–1393

    Article  Google Scholar 

  • Li M, Choudhury F, Bao Z, Samet H, Sellis T (2018) Concavecubes: Supporting cluster-based geographical visualization in large data scale. In: Computer graphics forum, Wiley, vol 37, pp 217–228

  • Li C, Baciu G, Wang Y, Chen J, Wang C (2021) Ddlvis: real-time visual query of spatiotemporal data distribution via density dictionary learning. IEEE Trans Vis Comput Graph 28(1):1062–1072

    Article  Google Scholar 

  • Li H, Wang Y, Zhang S, Song Y, Qu H (2021) Kg4vis: a knowledge graph-based approach for visualization recommendation. IEEE Trans Vis Comput Graph

  • Luo Y, Qin X, Tang N, Li G (2018) Deepeye: towards automatic data visualization. In: 2018 IEEE 34th international conference on data engineering (ICDE). IEEE, pp 101–112

  • Ma R, Mei H, Guan H, Huang W, Zhang F, Xin C, Dai W, Wen X, Chen W (2020) LADV: Deep learning assisted authoring of dashboard visualizations from images and sketches. IEEE Trans Vis Comput Graph 27(9):3717–3732

    Article  Google Scholar 

  • Mackinlay J, Hanrahan P, Stolte C (2007) Show me: automatic presentation for visual analysis. IEEE Trans Vis Comput Graph 13(6):1137–1144

    Article  Google Scholar 

  • Mayorga A, Gleicher M (2013) Splatterplots: overcoming overdraw in scatter plots. IEEE Trans Vis Comput Graph 19(9):1526–1538

    Article  Google Scholar 

  • Moon P, Spencer DE (1944) Aesthetic measure applied to color harmony. JOSA 34(4):234–242

    Article  Google Scholar 

  • Ngo DCL, Teo LS, Byrne JG (2003) Modelling interface aesthetics. Inf Sci 152:25–46

    Article  Google Scholar 

  • Nöllenburg M (2007) Geographic visualization. In: Human-centered visualization environments. Springer, Berlin, pp 257–294

  • Owonibi PKM (2017) A review on visualization recommendation strategies. In: Proceedings of the 12th international joint conference on computer vision, imaging and computer graphics theory and applications (VISIGRAPP 2017)

  • Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076

    Article  MathSciNet  Google Scholar 

  • Peng Y, Fan X, Chen R, Yu Z, Liu S, Chen Y, Zhao Y, Zhou F (2023) Visual abstraction of dynamic network via improved multi-class blue noise sampling. Front Comp Sci 17(1):171701

    Article  Google Scholar 

  • Polisciuc E, Maçãs C, Assunção F, Machado P (2016) Hexagonal gridded maps and information layers: a novel approach for the exploration and analysis of retail data. In: SIGGRAPH ASIA 2016 symposium on visualization, pp 1–8

  • Qian X, Rossi RA, Du F, Kim S, Koh E, Malik S, Lee TY, Chan J (2020) Ml-based visualization recommendation: Learning to recommend visualizations from data. Preprint arXiv:2009.12316

  • Qin X, Luo Y, Tang N, Li G (2018) Deepeye: an automatic big data visualization framework. Big Data Min Anal 1(1):75–82

    Article  Google Scholar 

  • Qin X, Luo Y, Tang N, Li G (2020) Making data visualization more efficient and effective: a survey. VLDB J 29(1):93–117

    Article  Google Scholar 

  • Rankin B (2010) Cartography and the reality of boundaries. Perspecta 42:42–45

    Google Scholar 

  • Santala S (2020) Fast interactive design of scatterplots for large data set visualisation. In: Extended abstracts of the 2020 CHI conference on human factors in computing systems, pp 1–6

  • Scott DW (2015) Multivariate density estimation: theory, practice, and visualization. Wiley, New York

    Book  Google Scholar 

  • Setlur V, Battersby S, Wong T (2021) Geosneakpique: visual autocompletion for geospatial queries. In: 2021 IEEE visualization conference (VIS). IEEE, pp 166–170

  • Shen L, Shen E, Tai Z, Song Y, Wang J (2021) Taskvis: task-oriented visualization recommendation. In: Proc. EuroVis, vol 21

  • Shen L, Shen E, Tai Z, Xu Y, Dong J, Wang J (2022) Visual data analysis with task-based recommendations. Data Sci Eng 7(4):354–369

    Article  Google Scholar 

  • Silverman BW (2018) Density estimation for statistics and data analysis. Routledge, New York

    Book  Google Scholar 

  • Treinish LA (1999) Task-specific visualization design. IEEE Comput Graphics Appl 19(5):72–77

    Article  Google Scholar 

  • Van Wijk JJ (2005) The value of visualization. In: VIS 05. IEEE visualization. IEEE, pp 79–86

  • Vartak M, Huang S, Siddiqui T, Madden S, Parameswaran A (2017) Towards visualization recommendation systems. ACM SIGMOD Rec 45(4):34–39

    Article  Google Scholar 

  • Wang Q, Chen Z, Wang Y, Qu H (2020) Applying machine learning advances to data visualization: a survey on ml4vis. Preprint arXiv:2012.00467

  • Wexler S, Shaffer J, Cotgreave A (2017) The big book of dashboards: visualizing your data using real-world business scenarios. Wiley

    Book  Google Scholar 

  • Wills G, Wilkinson L (2010) Autovis: automatic visualization. Inf Vis 9(1):47–69

    Article  Google Scholar 

  • Wongsuphasawat K, Moritz D, Anand A, Mackinlay J, Howe B, Heer J (2015) Voyager: exploratory analysis via faceted browsing of visualization recommendations. IEEE Trans Visual Comput Graph 22(1):649–658

    Article  Google Scholar 

  • Wu A, Wang Y, Shu X, Moritz D, Cui W, Zhang H, Zhang D, Qu H (2021) Survey on artificial intelligence approaches for visualization data. Preprint arXiv:2102.01330

  • Wu A, Wang Y, Zhou M, He X, Zhang H, Qu H, Zhang D (2021) Multivision: designing analytical dashboards with deep learning based recommendation. IEEE Trans Vis Comput Graph

  • Xia J, Li J, Chen S (2021) A survey on interdisciplinary research of visualization and artificial intelligence. Sci Sin (Inf) 51:1777–1801

    Article  Google Scholar 

  • Zhao P, Liu X, Shen J, Chen M (2019) A network distance and graph-partitioning-based clustering method for improving the accuracy of urban hotspot detection. Geocarto Int 34(3):293–315

    Article  Google Scholar 

  • Zhou Z, Zhang X, Yang Z, Chen Y, Liu Y, Wen J, Chen B, Zhao Y, Chen W (2020) Visual abstraction of geographical point data with spatial autocorrelations. In: 2020 IEEE conference on visual analytics science and technology (VAST). IEEE, pp 60–71

  • Zou T, Li W, Liu P, Su X, Huang H, Han Y, Guo X (2018) An overview of geospatial information visualization. In: 2018 IEEE international conference on progress in informatics and computing (PIC). IEEE, pp 250–254

Download references

Acknowledgements

This work was supported by the NSFC under Grants (No. 61802128 and 62072183) and the Yangtze River Delta Science and Technology Innovation Community Project, China (Grant No. 23002400400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenhui Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 2987 KB)

Supplementary file 2 (mp4 93087 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Jiang, S., Yu, X. et al. GeoVis: a data-driven geographic visualization recommendation system via latent space encoding. J Vis (2024). https://doi.org/10.1007/s12650-024-00986-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12650-024-00986-y

Keywords

Navigation