Skip to main content

EddyVis: A visual system to analyze eddies

Abstract

Research on the eddy evolution can help domain experts understand the role in the transport of heat, salt and biochemical properties in the ocean. Advanced visualization techniques provide opportunities for the analysis and research of ocean eddies. However, the visual analysis of eddy evolution usually only focuses on the tracking path and global statistics. The entity relationship and attribute changes in eddy evolution process cannot be reflected intuitively, due to the limitation of analysis tools. Besides, omissions and errors in detection will interfere with the analysis process. To tackle these problems, we propose EddyVis, a multi-view interactive visual system to expose attributes and morphology of the eddy evolution process, enabling experts to analyze the eddy activities and verify the eddy detection results with the help of three-dimensional streamlines. Domain scientists can easily utilize our system to explore the evolution process, and to compare the detection results under different parameters visually and interactively. We conduct several case studies to demonstrate the usage and effectiveness of our system in the research of events in the eddy lifetime.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  • Banesh D, Schoonover JA, Ahrens JP, Hamann B (2017) Extracting, visualizing and tracking mesoscale ocean eddies in two-dimensional image sequences using contours and moments. In: Workshop on visualisation in environmental sciences (EnvirVis)

  • Born S, Wiebel A, Friedrich J, Scheuermann G, Bartz D (2010) Illustrative stream surfaces. IEEE Trans Visualization Comput Gr 16(6):1329–1338

    Article  Google Scholar 

  • Callahan SP, Ikits M, Comba JLD, Silva CT (2005) Hardware-assisted visibility sorting for unstructured volume rendering. IEEE Trans Visualization Comput Gr 11(3):285–295

    Article  Google Scholar 

  • Chaigneau A, Gizolme A, Grados C (2008) Mesoscale eddies off peru in altimeter records: identification algorithms and eddy spatio-temporal patterns. Prog Oceanogr 79(2–4):106–119

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Samelson RM, de Szoeke RA (2007) Global observations of large oceanic eddies. Geophys Res Lett 34(15):L15606

    Article  Google Scholar 

  • Chen G, Hou Y, Chu X, Qi P, Hu P (2009) The variability of eddy kinetic energy in the south china sea deduced from satellite altimeter data. Chin J Oceanol Limnol 27(4):943

    Article  Google Scholar 

  • Chen Y, Cohen J, Krolik J (2007) Similarity-guided streamline placement with error evaluation. IEEE Trans Visualization Comput Gr 13(6):1448–1455

    Article  Google Scholar 

  • Clyne J, Mininni P, Norton A (2012) Physically-based feature tracking for CFD data. IEEE Trans Visualization Comput Gr 19(6):1020–1033

    Article  Google Scholar 

  • Elhmaïdi D, Provenzale A, Babiano A (1993) Elementary topology of two-dimensional turbulence from a Lagrangian viewpoint and single-particle dispersion. J Fluid Mech 257:533–558

    MATH  Article  Google Scholar 

  • Evans RH, Baker KS, Brown OB, Smith RC (1985) Chronology of warm-core ring 82b. J Geophys Res: Oceans 90(C5):8803–8811

    Article  Google Scholar 

  • Ferstl F, Bürger K, Westermann R (2015) Streamline variability plots for characterizing the uncertainty in vector field ensembles. IEEE Trans Visualization Comput Gr 22(1):767–776

    Article  Google Scholar 

  • Garth C, Tricoche X, Scheuermann G (2004) Tracking of vector field singularities in unstructured 3d time-dependent datasets. In: IEEE Visualization 2004, IEEE, pp 329–336

  • Günther T, Theisel H (2018) The state of the art in vortex extraction. Comput Gr Forum 37:149–173

    Article  Google Scholar 

  • Huang Y, Green MA (2015) Detection and tracking of vortex phenomena using Lagrangian coherent structures. Exp Fluids 56(7):1–12

    Google Scholar 

  • Isern-Fontanet J, García-Ladona E, Font J (2003) Identification of marine eddies from altimetric maps. J Atmos Ocean Technol 20(5):772–778

    Article  Google Scholar 

  • Kang D, Curchitser EN (2013) Gulf stream eddy characteristics in a high-resolution ocean model. J Geophys Res: Oceans 118(9):4474–4487

    Article  Google Scholar 

  • Lander M, Holland GJ (1993) On the interaction of tropical-cyclone-scale vortices. i: observations. Q J R Meteorol Soc 119(514):1347–1361

    Article  Google Scholar 

  • Li G, Wang J, Shen HW, Chen K, Shan G, Lu Z (2020) Cnnpruner: Pruning convolutional neural networks with visual analytics. IEEE Trans Visualization Comput Gr 27(2):1364–1373

    Article  Google Scholar 

  • Li L, Shen HW (2007) Image-based streamline generation and rendering. IEEE Trans Visualization Comput Gr 13(3):630–640

    Article  Google Scholar 

  • Liu L, Silver D, Bemis K (2019) Visualizing three-dimensional ocean eddies in web browsers. IEEE Access 7:44734–44747

    Article  Google Scholar 

  • Matsuoka D, Araki F, Inoue Y, Sasaki H (2016) A new approach to ocean eddy detection, tracking, and event visualization-application to the northwest pacific ocean. Procedia Comput Sci 80:1601–1611

    Article  Google Scholar 

  • McLoughlin T, Jones MW, Laramee RS, Malki R, Masters I, Hansen CD (2012) Similarity measures for enhancing interactive streamline seeding. IEEE Trans Visualization Comput Gr 19(8):1342–1353

    Article  Google Scholar 

  • Nencioli F, Dong C, Dickey T, Washburn L, McWilliams JC (2010) A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the southern California bight. J Atmos Ocean Technol 27(3):564–579

    Article  Google Scholar 

  • Okubo A (1970) Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Res Oceanogr Abstr 17:445–454

    Article  Google Scholar 

  • Pasquero C, Provenzale A, Babiano A (2001) Parameterization of dispersion in two-dimensional turbulence. J Fluid Mech 439:279

    MATH  Article  Google Scholar 

  • Penven P, Echevin V, Pasapera J, Colas F, Tam J (2005) Average circulation, seasonal cycle, and mesoscale dynamics of the peru current system: a modeling approach. J Geophys Res: Oceans 110(C10):C10021

    Article  Google Scholar 

  • Qiu B, Nakano T, Chen S, Klein P (2017) Submesoscale transition from geostrophic flows to internal waves in the northwestern pacific upper ocean. Nat Commun 8(1):1–10

    Article  Google Scholar 

  • Qiu C, Mao H, Liu H, Xie Q, Yu J, Su D, Ouyang J, Lian S (2019) Deformation of a warm eddy in the Northern South China sea. J Geophys Res: Oceans 124(8):5551–5564

    Article  Google Scholar 

  • Sadarjoen IA, Post FH (2000) Detection, quantification, and tracking of vortices using streamline geometry. Comput Gr 24(3):333–341

    Article  Google Scholar 

  • Storch JSV, Eden C, Fast I, Haak H, Hernández-Deckers D, Maier-Reimer E, Marotzke J, Stammer D (2012) An estimate of the Lorenz energy cycle for the world ocean based on the storm/ncep simulation. J Phys Oceanogr 42(12):2185–2205

    Article  Google Scholar 

  • Tao J, Wang C, Shene CK, Kim SH (2013) A deformation framework for focus+ context flow visualization. IEEE Trans Visualization Comput Gr 20(1):42–55

    Google Scholar 

  • Tian F, Cheng L, Chen G (2020) Transfer function-based 2d/3d interactive spatiotemporal visualizations of mesoscale eddies. Int J Digit Earth 13(5):546–566

    Article  Google Scholar 

  • Toye H, Zhan P, Gopalakrishnan G, Kartadikaria AR, Huang H, Knio O, Hoteit I (2017) Ensemble data assimilation in the red sea: sensitivity to ensemble selection and atmospheric forcing. Ocean Dyn 67(7):915–933

    Article  Google Scholar 

  • Weiss J (1991) The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Phys D: Nonlinear Phenom 48(2–3):273–294

    MathSciNet  MATH  Article  Google Scholar 

  • Williams S, Hecht M, Petersen M, Strelitz R, Maltrud M, Ahrens J, Hlawitschka M, Hamann B (2011) Visualization and analysis of eddies in a global ocean simulation. Comput Gr Forum 30:991–1000

    Article  Google Scholar 

  • Williams S, Petersen M, Hecht M, Maltrud M, Patchett J, Ahrens J, Hamann B (2012) Interface exchange as an indicator for eddy heat transport. Comput Gr Forum 31:1125–1134

    Article  Google Scholar 

  • Xie L, Liu X, Pietrafesa LJ (2007) Effect of bathymetric curvature on gulf stream instability in the vicinity of the Charleston bump. J Phys Oceanogr 37(3):452–475

    Article  Google Scholar 

  • Xu L, Lee TY, Shen HW (2010) An information-theoretic framework for flow visualization. IEEE Trans Visualization Comput Gr 16(6):1216–1224

    Article  Google Scholar 

  • Ye X, Kao D, Pang A (2005) Strategy for seeding 3d streamlines. In: VIS 05. IEEE Visualization, 2005., IEEE, pp 471–478

  • Zhan P (2018) Properties, mechanisms and predictability of eddies in the red sea. PhD thesis

  • Zhan P, Subramanian AC, Yao F, Hoteit I (2014) Eddies in the red sea: a statistical and dynamical study. J Geophys Res: Oceans 119(6):3909–3925

    Article  Google Scholar 

  • Zhao Y, Jiang H, Qin Y, Xie H, Wu Y, Liu S, Zhou Z, Xia J, Zhou F et al (2020) Preserving minority structures in graph sampling. IEEE Trans Visualization Comput Gr 27(2):1698–1708

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDA19080102. We would like to thank Research professor Zhu Jiang (The Institute of Atmospheric Physics, Chinese Academy of Sciences) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihua Shan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yue, R., Li, G., Lu, X. et al. EddyVis: A visual system to analyze eddies. J Vis 25, 521–541 (2022). https://doi.org/10.1007/s12650-021-00798-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-021-00798-4

Keywords

  • Eddy evolution
  • Flow visualization
  • Visual analysis
  • Streamline